MODULE ice !!====================================================================== !! *** MODULE ice *** !! LIM-3 Sea Ice physics: diagnostics variables of ice defined in memory !!===================================================================== !! History : 3.0 ! 2008-03 (M. Vancoppenolle) original code LIM-3 !! 4.0 ! 2011-02 (G. Madec) dynamical allocation !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' LIM-3 sea-ice model !!---------------------------------------------------------------------- USE in_out_manager ! I/O manager USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC ice_alloc ! Called in sbc_lim_init !!====================================================================== !! LIM3 by the use of sweat, agile fingers and sometimes brain juice, !! was developed in Louvain-la-Neuve by : !! * Martin Vancoppenolle (UCL-ASTR, Belgium) !! * Sylvain Bouillon (UCL-ASTR, Belgium) !! * Miguel Angel Morales Maqueda (NOC-L, UK) !! !! Based on extremely valuable earlier work by !! * Thierry Fichefet !! * Hugues Goosse !! !! The following persons also contributed to the code in various ways !! * Gurvan Madec, Claude Talandier, Christian Ethe (LOCEAN, France) !! * Xavier Fettweis (UCL-ASTR), Ralph Timmermann (AWI, Germany) !! * Bill Lipscomb (LANL), Cecilia Bitz (UWa) !! and Elisabeth Hunke (LANL), USA. !! !! For more info, the interested user is kindly invited to consult the following references !! For model description and validation : !! * Vancoppenolle et al., Ocean Modelling, 2008a. !! * Vancoppenolle et al., Ocean Modelling, 2008b. !! For a specific description of EVP : !! * Bouillon et al., Ocean Modelling 2009. !! !! Or the reference manual, that should be available by 2011 !!====================================================================== !! | !! I C E S T A T E V A R I A B L E S | !! | !! Introduction : | !! -------------- | !! Every ice-covered grid cell is characterized by a series of state | !! variables. To account for unresolved spatial variability in ice | !! thickness, the ice cover in divided in ice thickness categories. | !! | !! Sea ice state variables depend on the ice thickness category | !! | !! Those variables are divided into two groups | !! * Extensive (or global) variables. | !! These are the variables that are transported by all means | !! * Intensive (or equivalent) variables. | !! These are the variables that are either physically more | !! meaningful and/or used in ice thermodynamics | !! | !! Routines in limvar.F90 perform conversions | !! - lim_var_glo2eqv : from global to equivalent variables | !! - lim_var_eqv2glo : from equivalent to global variables | !! | !! For various purposes, the sea ice state variables have sometimes | !! to be aggregated over all ice thickness categories. This operation | !! is done in : | !! - lim_var_agg | !! | !! in icestp.F90, the routines that compute the changes in the ice | !! state variables are called | !! - lim_dyn : ice dynamics | !! - lim_trp : ice transport | !! - lim_itd_me : mechanical redistribution (ridging and rafting) | !! - lim_thd : ice halo-thermodynamics | !! - lim_itd_th : thermodynamic changes in ice thickness distribution | !! and creation of new ice | !! | !! See the associated routines for more information | !! | !! List of ice state variables : | !! ----------------------------- | !! | !!-------------|-------------|---------------------------------|-------| !! name in | name in | meaning | units | !! 2D routines | 1D routines | | | !!-------------|-------------|---------------------------------|-------| !! | !! ******************************************************************* | !! *** Dynamical variables (prognostic) *** | !! ******************************************************************* | !! | !! u_ice | - | Comp. U of the ice velocity | m/s | !! v_ice | - | Comp. V of the ice velocity | m/s | !! | !! ******************************************************************* | !! *** Category dependent state variables (prognostic) *** | !! ******************************************************************* | !! | !! ** Global variables | !!-------------|-------------|---------------------------------|-------| !! a_i | a_i_1d | Ice concentration | | !! v_i | - | Ice volume per unit area | m | !! v_s | - | Snow volume per unit area | m | !! smv_i | - | Sea ice salt content | ppt.m | !! oa_i ! - ! Sea ice areal age content | day | !! e_i ! - ! Ice enthalpy | J/m2 | !! - ! q_i_1d ! Ice enthalpy per unit vol. | J/m3 | !! e_s ! - ! Snow enthalpy | J/m2 | !! - ! q_s_1d ! Snow enthalpy per unit vol. | J/m3 | !! | !!-------------|-------------|---------------------------------|-------| !! | !! ** Equivalent variables | !!-------------|-------------|---------------------------------|-------| !! | !! ht_i | ht_i_1d | Ice thickness | m | !! ht_s ! ht_s_1d | Snow depth | m | !! sm_i ! sm_i_1d | Sea ice bulk salinity ! ppt | !! s_i ! s_i_1d | Sea ice salinity profile ! ppt | !! o_i ! - | Sea ice Age ! days | !! t_i ! t_i_1d | Sea ice temperature ! K | !! t_s ! t_s_1d | Snow temperature ! K | !! t_su ! t_su_1d | Sea ice surface temperature ! K | !! | !! notes: the ice model only sees a bulk (i.e., vertically averaged) | !! salinity, except in thermodynamic computations, for which | !! the salinity profile is computed as a function of bulk | !! salinity | !! | !! the sea ice surface temperature is not associated to any | !! heat content. Therefore, it is not a state variable and | !! does not have to be advected. Nevertheless, it has to be | !! computed to determine whether the ice is melting or not | !! | !! ******************************************************************* | !! *** Category-summed state variables (diagnostic) *** | !! ******************************************************************* | !! at_i | at_i_1d | Total ice concentration | | !! vt_i | - | Total ice vol. per unit area | m | !! vt_s | - | Total snow vol. per unit ar. | m | !! smt_i | - | Mean sea ice salinity | ppt | !! tm_i | - | Mean sea ice temperature | K | !! ot_i ! - ! Sea ice areal age content | day | !! et_i ! - ! Total ice enthalpy | J/m2 | !! et_s ! - ! Total snow enthalpy | J/m2 | !! bv_i ! - ! Mean relative brine volume | ??? | !!===================================================================== LOGICAL, PUBLIC :: con_i = .false. ! switch for conservation test !!-------------------------------------------------------------------------- !! * Share Module variables !!-------------------------------------------------------------------------- INTEGER , PUBLIC :: nstart !: iteration number of the begining of the run INTEGER , PUBLIC :: nlast !: iteration number of the end of the run INTEGER , PUBLIC :: nitrun !: number of iteration INTEGER , PUBLIC :: numit !: iteration number REAL(wp), PUBLIC :: rdt_ice !: ice time step REAL(wp), PUBLIC :: r1_rdtice !: = 1. / rdt_ice ! !!** ice-thickness distribution namelist (namiceitd) ** INTEGER , PUBLIC :: nn_catbnd !: categories distribution following: tanh function (1), or h^(-alpha) function (2) REAL(wp), PUBLIC :: rn_himean !: mean thickness of the domain (used to compute the distribution, nn_itdshp = 2 only) ! !!** ice-dynamics namelist (namicedyn) ** LOGICAL , PUBLIC :: ln_icestr_bvf !: use brine volume to diminish ice strength INTEGER , PUBLIC :: nn_icestr !: ice strength parameterization (0=Hibler79 1=Rothrock75) INTEGER , PUBLIC :: nn_nevp !: number of iterations for subcycling INTEGER , PUBLIC :: nn_ahi0 !: sea-ice hor. eddy diffusivity coeff. (3 ways of calculation) REAL(wp), PUBLIC :: rn_pe_rdg !: ridging work divided by pot. energy change in ridging, nn_icestr = 1 REAL(wp), PUBLIC :: rn_cio !: drag coefficient for oceanic stress REAL(wp), PUBLIC :: rn_pstar !: determines ice strength (N/M), Hibler JPO79 REAL(wp), PUBLIC :: rn_crhg !: determines changes in ice strength REAL(wp), PUBLIC :: rn_creepl !: creep limit : has to be under 1.0e-9 REAL(wp), PUBLIC :: rn_ecc !: eccentricity of the elliptical yield curve REAL(wp), PUBLIC :: rn_ahi0_ref !: sea-ice hor. eddy diffusivity coeff. (m2/s) REAL(wp), PUBLIC :: rn_relast !: ratio => telast/rdt_ice (1/3 or 1/9 depending on nb of subcycling nevp) ! !!** ice-salinity namelist (namicesal) ** REAL(wp), PUBLIC :: rn_simax !: maximum ice salinity [PSU] REAL(wp), PUBLIC :: rn_simin !: minimum ice salinity [PSU] REAL(wp), PUBLIC :: rn_sal_gd !: restoring salinity for gravity drainage [PSU] REAL(wp), PUBLIC :: rn_sal_fl !: restoring salinity for flushing [PSU] REAL(wp), PUBLIC :: rn_time_gd !: restoring time constant for gravity drainage (= 20 days) [s] REAL(wp), PUBLIC :: rn_time_fl !: restoring time constant for gravity drainage (= 10 days) [s] REAL(wp), PUBLIC :: rn_icesal !: bulk salinity (ppt) in case of constant salinity ! !!** ice-salinity namelist (namicesal) ** INTEGER , PUBLIC :: nn_icesal !: salinity configuration used in the model ! ! 1 - constant salinity in both space and time ! ! 2 - prognostic salinity (s(z,t)) ! ! 3 - salinity profile, constant in time INTEGER , PUBLIC :: nn_ice_thcon !: thermal conductivity: =0 Untersteiner (1964) ; =1 Pringle et al (2007) INTEGER , PUBLIC :: nn_monocat !: virtual ITD mono-category parameterizations (1) or not (0) LOGICAL , PUBLIC :: ln_it_qnsice !: iterate surface flux with changing surface temperature or not (F) ! !!** ice-mechanical redistribution namelist (namiceitdme) REAL(wp), PUBLIC :: rn_cs !: fraction of shearing energy contributing to ridging REAL(wp), PUBLIC :: rn_fsnowrdg !: fractional snow loss to the ocean during ridging REAL(wp), PUBLIC :: rn_fsnowrft !: fractional snow loss to the ocean during ridging REAL(wp), PUBLIC :: rn_gstar !: fractional area of young ice contributing to ridging REAL(wp), PUBLIC :: rn_astar !: equivalent of G* for an exponential participation function REAL(wp), PUBLIC :: rn_hstar !: thickness that determines the maximal thickness of ridged ice REAL(wp), PUBLIC :: rn_hraft !: threshold thickness (m) for rafting / ridging REAL(wp), PUBLIC :: rn_craft !: coefficient for smoothness of the hyperbolic tangent in rafting REAL(wp), PUBLIC :: rn_por_rdg !: initial porosity of ridges (0.3 regular value) REAL(wp), PUBLIC :: rn_betas !: coef. for partitioning of snowfall between leads and sea ice REAL(wp), PUBLIC :: rn_kappa_i !: coef. for the extinction of radiation Grenfell et al. (2006) [1/m] REAL(wp), PUBLIC :: rn_cdsn !: thermal conductivity of the snow [W/m/K] REAL(wp), PUBLIC :: nn_conv_dif !: maximal number of iterations for heat diffusion REAL(wp), PUBLIC :: rn_terr_dif !: maximal tolerated error (C) for heat diffusion ! !!** ice-mechanical redistribution namelist (namiceitdme) LOGICAL , PUBLIC :: ln_rafting !: rafting of ice or not INTEGER , PUBLIC :: nn_partfun !: participation function: =0 Thorndike et al. (1975), =1 Lipscomb et al. (2007) REAL(wp), PUBLIC :: usecc2 !: = 1.0 / ( rn_ecc * rn_ecc ) REAL(wp), PUBLIC :: rhoco !: = rau0 * cio REAL(wp), PUBLIC :: r1_nlay_i !: 1 / nlay_i REAL(wp), PUBLIC :: r1_nlay_s !: 1 / nlay_s ! ! !!** switch for presence of ice or not REAL(wp), PUBLIC :: rswitch ! ! !!** define some parameters REAL(wp), PUBLIC, PARAMETER :: epsi06 = 1.e-06_wp !: small number REAL(wp), PUBLIC, PARAMETER :: epsi10 = 1.e-10_wp !: small number REAL(wp), PUBLIC, PARAMETER :: epsi20 = 1.e-20_wp !: small number REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: u_oce, v_oce !: surface ocean velocity used in ice dynamics REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ahiu , ahiv !: hor. diffusivity coeff. at U- and V-points [m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ust2s, hicol !: friction velocity, ice collection thickness accreted in leads REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: strp1, strp2 !: strength at previous time steps REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: strength !: ice strength REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: stress1_i, stress2_i, stress12_i !: 1st, 2nd & diagonal stress tensor element REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: delta_i !: ice rheology elta factor (Flato & Hibler 95) [s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: divu_i !: Divergence of the velocity field [s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: shear_i !: Shear of the velocity field [s-1] ! REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sist !: Average Sea-Ice Surface Temperature [Kelvin] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: t_bo !: Sea-Ice bottom temperature [Kelvin] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: frld !: Leads fraction = 1 - ice fraction REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: pfrld !: Leads fraction at previous time REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: phicif !: Old ice thickness REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qlead !: heat balance of the lead (or of the open ocean) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fhtur !: net downward heat flux from the ice to the ocean REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fhld !: heat flux from the lead used for bottom melting REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_snw !: snow-ocean mass exchange [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_spr !: snow precipitation on ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_sub !: snow/ice sublimation [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_ice !: ice-ocean mass exchange [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_sni !: snow ice growth component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_opw !: lateral ice growth component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_bog !: bottom ice growth component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_dyn !: dynamical ice growth component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_bom !: bottom melt component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_sum !: surface melt component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_res !: residual component of wfx_ice [kg.m-2.s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: afx_tot !: ice concentration tendency (total) [s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: afx_thd !: ice concentration tendency (thermodynamics) [s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: afx_dyn !: ice concentration tendency (dynamics) [s-1] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_bog !: salt flux due to ice growth/melt [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_bom !: salt flux due to ice growth/melt [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_sum !: salt flux due to ice growth/melt [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_sni !: salt flux due to ice growth/melt [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_opw !: salt flux due to ice growth/melt [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_bri !: salt flux due to brine rejection [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_dyn !: salt flux due to porous ridged ice formation [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_res !: residual salt flux due to correction of ice thickness [PSU/m2/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx_sub !: salt flux due to ice sublimation REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_bog !: total heat flux causing bottom ice growth [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_bom !: total heat flux causing bottom ice melt [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_sum !: total heat flux causing surface ice melt [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_opw !: total heat flux causing open water ice formation [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_dif !: total heat flux causing Temp change in the ice [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_snw !: heat flux for snow melt [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_err !: heat flux error after heat diffusion [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_err_dif !: heat flux remaining due to change in non-solar flux [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_err_rem !: heat flux error after heat remapping [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_in !: heat flux available for thermo transformations [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_out !: heat flux remaining at the end of thermo transformations [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wfx_err_sub !: mass flux error after sublimation [kg.m-2.s-1] ! heat flux associated with ice-atmosphere mass exchange REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_sub !: heat flux for sublimation [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_spr !: heat flux of the snow precipitation [W.m-2] ! heat flux associated with ice-ocean mass exchange REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_thd !: ice-ocean heat flux from thermo processes (limthd_dh) [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_dyn !: ice-ocean heat flux from mecanical processes (limitd_me) [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hfx_res !: residual heat flux due to correction of ice thickness [W.m-2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ftr_ice !: transmitted solar radiation under ice REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: pahu3D , pahv3D REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rn_amax_2d !: maximum ice concentration 2d array !!-------------------------------------------------------------------------- !! * Ice global state variables !!-------------------------------------------------------------------------- !! Variables defined for each ice category REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ht_i !: Ice thickness (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: a_i !: Ice fractional areas (concentration) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: v_i !: Ice volume per unit area (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: v_s !: Snow volume per unit area(m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ht_s !: Snow thickness (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: t_su !: Sea-Ice Surface Temperature (K) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sm_i !: Sea-Ice Bulk salinity (ppt) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: smv_i !: Sea-Ice Bulk salinity times volume per area (ppt.m) ! ! this is an extensive variable that has to be transported REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: o_i !: Sea-Ice Age (days) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: oa_i !: Sea-Ice Age times ice area (days) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: bv_i !: brine volume !! Variables summed over all categories, or associated to all the ice in a single grid cell REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: u_ice, v_ice !: components of the ice velocity (m/s) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: vt_i , vt_s !: ice and snow total volume per unit area (m) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: at_i !: ice total fractional area (ice concentration) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ato_i !: =1-at_i ; total open water fractional area REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: et_i , et_s !: ice and snow total heat content REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: tm_i !: mean ice temperature over all categories REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: bvm_i !: brine volume averaged over all categories REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: smt_i !: mean sea ice salinity averaged over all categories [PSU] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: tm_su !: mean surface temperature over all categories REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: htm_i !: mean ice thickness over all categories REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: htm_s !: mean snow thickness over all categories REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: om_i !: mean ice age over all categories REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: t_s !: Snow temperatures [K] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: e_s !: Snow ... REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: t_i !: ice temperatures [K] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: e_i !: ice thermal contents [J/m2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: s_i !: ice salinities [PSU] !!-------------------------------------------------------------------------- !! * Moments for advection !!-------------------------------------------------------------------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sxopw, syopw, sxxopw, syyopw, sxyopw !: open water in sea ice REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxice, syice, sxxice, syyice, sxyice !: ice thickness REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxsn , sysn , sxxsn , syysn , sxysn !: snow thickness REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxa , sya , sxxa , syya , sxya !: lead fraction REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxc0 , syc0 , sxxc0 , syyc0 , sxyc0 !: snow thermal content REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxsal, sysal, sxxsal, syysal, sxysal !: ice salinity REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sxage, syage, sxxage, syyage, sxyage !: ice age REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: sxe , sye , sxxe , syye , sxye !: ice layers heat content !!-------------------------------------------------------------------------- !! * Old values of global variables !!-------------------------------------------------------------------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: v_s_b, v_i_b !: snow and ice volumes REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: a_i_b, smv_i_b, oa_i_b !: REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: e_s_b !: snow heat content REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: e_i_b !: ice temperatures REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: u_ice_b, v_ice_b !: ice velocity !!-------------------------------------------------------------------------- !! * Ice thickness distribution variables !!-------------------------------------------------------------------------- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: hi_max !: Boundary of ice thickness categories in thickness space REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: hi_mean !: Mean ice thickness in catgories !!-------------------------------------------------------------------------- !! * Ice Run !!-------------------------------------------------------------------------- ! !!: ** Namelist namicerun read in sbc_lim_init ** INTEGER , PUBLIC :: jpl !: number of ice categories INTEGER , PUBLIC :: nlay_i !: number of ice layers INTEGER , PUBLIC :: nlay_s !: number of snow layers CHARACTER(len=80), PUBLIC :: cn_icerst_in !: suffix of ice restart name (input) CHARACTER(len=256), PUBLIC :: cn_icerst_indir !: ice restart input directory CHARACTER(len=80), PUBLIC :: cn_icerst_out !: suffix of ice restart name (output) CHARACTER(len=256), PUBLIC :: cn_icerst_outdir!: ice restart output directory LOGICAL , PUBLIC :: ln_limdyn !: flag for ice dynamics (T) or not (F) LOGICAL , PUBLIC :: ln_icectl !: flag for sea-ice points output (T) or not (F) REAL(wp) , PUBLIC :: rn_amax_n !: maximum ice concentration Northern hemisphere REAL(wp) , PUBLIC :: rn_amax_s !: maximum ice concentration Southern hemisphere INTEGER , PUBLIC :: iiceprt !: debug i-point INTEGER , PUBLIC :: jiceprt !: debug j-point ! !!-------------------------------------------------------------------------- !! * Ice diagnostics !!-------------------------------------------------------------------------- ! Increment of global variables ! thd refers to changes induced by thermodynamics ! trp '' '' '' advection (transport of ice) LOGICAL , PUBLIC :: ln_limdiahsb !: flag for ice diag (T) or not (F) LOGICAL , PUBLIC :: ln_limdiaout !: flag for ice diag (T) or not (F) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_trp_vi !: transport of ice volume REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_trp_vs !: transport of snw volume REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_trp_ei !: transport of ice enthalpy (W/m2) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_trp_es !: transport of snw enthalpy (W/m2) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_trp_smv !: transport of salt content ! REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_heat !: snw/ice heat content variation [W/m2] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_smvi !: ice salt content variation [] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_vice !: ice volume variation [m/s] REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: diag_vsnw !: snw volume variation [m/s] ! !!---------------------------------------------------------------------- !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2010) !! $Id: ice.F90 4990 2014-12-15 16:42:49Z timgraham $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS FUNCTION ice_alloc() !!----------------------------------------------------------------- !! *** Routine ice_alloc *** !!----------------------------------------------------------------- INTEGER :: ice_alloc ! INTEGER :: ierr(17), ii !!----------------------------------------------------------------- ierr(:) = 0 ! What could be one huge allocate statement is broken-up to try to ! stay within Fortran's max-line length limit. ii = 1 ALLOCATE( u_oce (jpi,jpj) , v_oce (jpi,jpj) , & & ahiu (jpi,jpj) , ahiv (jpi,jpj) , & & ust2s (jpi,jpj) , hicol (jpi,jpj) , & & strp1 (jpi,jpj) , strp2 (jpi,jpj) , strength (jpi,jpj) , & & stress1_i(jpi,jpj) , stress2_i(jpi,jpj) , stress12_i(jpi,jpj) , & & delta_i (jpi,jpj) , divu_i (jpi,jpj) , shear_i (jpi,jpj) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN u_oce = 0 v_oce = 0 ahiu = 0 ahiv = 0 ust2s = 0 hicol = 0 strp1 = 0 strp2 = 0 strength = 0 stress1_i = 0 stress2_i = 0 stress12_i = 0 delta_i = 0 divu_i = 0 shear_i = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN u_oce = HUGE(u_oce) v_oce = HUGE(v_oce) ahiu = HUGE(ahiu) ahiv = HUGE(ahiv) ust2s = HUGE(ust2s) hicol = HUGE(hicol) strp1 = HUGE(strp1) strp2 = HUGE(strp2) strength = HUGE(strength) stress1_i = HUGE(stress1_i) stress2_i = HUGE(stress2_i) stress12_i = HUGE(stress12_i) delta_i = HUGE(delta_i) divu_i = HUGE(divu_i) shear_i = HUGE(shear_i) ENDIF #endif ii = ii + 1 ALLOCATE( sist (jpi,jpj) , t_bo (jpi,jpj) , & & frld (jpi,jpj) , pfrld (jpi,jpj) , phicif (jpi,jpj) , & & wfx_snw(jpi,jpj) , wfx_ice(jpi,jpj) , wfx_sub(jpi,jpj) , & & wfx_bog(jpi,jpj) , wfx_dyn(jpi,jpj) , wfx_bom(jpi,jpj) , wfx_sum(jpi,jpj) , & & wfx_res(jpi,jpj) , wfx_sni(jpi,jpj) , wfx_opw(jpi,jpj) , wfx_spr(jpi,jpj) , & & afx_tot(jpi,jpj) , afx_thd(jpi,jpj), afx_dyn(jpi,jpj) , & & fhtur (jpi,jpj) , ftr_ice(jpi,jpj,jpl), pahu3D(jpi,jpj,jpl+1), pahv3D(jpi,jpj,jpl+1), & & qlead (jpi,jpj) , rn_amax_2d(jpi,jpj), & & sfx_res(jpi,jpj) , sfx_bri(jpi,jpj) , sfx_dyn(jpi,jpj) , sfx_sub(jpi,jpj), & & sfx_bog(jpi,jpj) , sfx_bom(jpi,jpj) , sfx_sum(jpi,jpj) , sfx_sni(jpi,jpj) , sfx_opw(jpi,jpj) , & & hfx_res(jpi,jpj) , hfx_snw(jpi,jpj) , hfx_sub(jpi,jpj) , hfx_err(jpi,jpj) , & & hfx_err_dif(jpi,jpj) , hfx_err_rem(jpi,jpj) , wfx_err_sub(jpi,jpj) , & & hfx_in (jpi,jpj) , hfx_out(jpi,jpj) , fhld(jpi,jpj) , & & hfx_sum(jpi,jpj) , hfx_bom(jpi,jpj) , hfx_bog(jpi,jpj) , hfx_dif(jpi,jpj) , hfx_opw(jpi,jpj) , & & hfx_thd(jpi,jpj) , hfx_dyn(jpi,jpj) , hfx_spr(jpi,jpj) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN sist = 0 t_bo = 0 frld = 0 pfrld = 0 phicif = 0 wfx_snw = 0 wfx_ice = 0 wfx_sub = 0 wfx_bog = 0 wfx_dyn = 0 wfx_bom = 0 wfx_sum = 0 wfx_res = 0 wfx_sni = 0 wfx_opw = 0 wfx_spr = 0 afx_tot = 0 afx_thd = 0 afx_dyn = 0 fhtur = 0 ftr_ice = 0 pahu3D = 0 pahv3D = 0 qlead = 0 rn_amax_2d = 0 sfx_res = 0 sfx_bri = 0 sfx_dyn = 0 sfx_sub = 0 sfx_bog = 0 sfx_bom = 0 sfx_sum = 0 sfx_sni = 0 sfx_opw = 0 hfx_res = 0 hfx_snw = 0 hfx_sub = 0 hfx_err = 0 hfx_err_dif = 0 hfx_err_rem = 0 wfx_err_sub = 0 hfx_in = 0 hfx_out = 0 fhld = 0 hfx_sum = 0 hfx_bom = 0 hfx_bog = 0 hfx_dif = 0 hfx_opw = 0 hfx_thd = 0 hfx_dyn = 0 hfx_spr = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN sist = HUGE(sist) t_bo = HUGE(t_bo) frld = HUGE(frld) pfrld = HUGE(pfrld) phicif = HUGE(phicif) wfx_snw = HUGE(wfx_snw) wfx_ice = HUGE(wfx_ice) wfx_sub = HUGE(wfx_sub) wfx_bog = HUGE(wfx_bog) wfx_dyn = HUGE(wfx_dyn) wfx_bom = HUGE(wfx_bom) wfx_sum = HUGE(wfx_sum) wfx_res = HUGE(wfx_res) wfx_sni = HUGE(wfx_sni) wfx_opw = HUGE(wfx_opw) wfx_spr = HUGE(wfx_spr) afx_tot = HUGE(afx_tot) afx_thd = HUGE(afx_thd) afx_dyn = HUGE(afx_dyn) fhtur = HUGE(fhtur) ftr_ice = HUGE(ftr_ice) pahu3D = HUGE(pahu3D) pahv3D = HUGE(pahv3D) qlead = HUGE(qlead) rn_amax_2d = HUGE(rn_amax_2d) sfx_res = HUGE(sfx_res) sfx_bri = HUGE(sfx_bri) sfx_dyn = HUGE(sfx_dyn) sfx_sub = HUGE(sfx_sub) sfx_bog = HUGE(sfx_bog) sfx_bom = HUGE(sfx_bom) sfx_sum = HUGE(sfx_sum) sfx_sni = HUGE(sfx_sni) sfx_opw = HUGE(sfx_opw) hfx_res = HUGE(hfx_res) hfx_snw = HUGE(hfx_snw) hfx_sub = HUGE(hfx_sub) hfx_err = HUGE(hfx_err) hfx_err_dif = HUGE(hfx_err_dif) hfx_err_rem = HUGE(hfx_err_rem) wfx_err_sub = HUGE(wfx_err_sub) hfx_in = HUGE(hfx_in) hfx_out = HUGE(hfx_out) fhld = HUGE(fhld) hfx_sum = HUGE(hfx_sum) hfx_bom = HUGE(hfx_bom) hfx_bog = HUGE(hfx_bog) hfx_dif = HUGE(hfx_dif) hfx_opw = HUGE(hfx_opw) hfx_thd = HUGE(hfx_thd) hfx_dyn = HUGE(hfx_dyn) hfx_spr = HUGE(hfx_spr) ENDIF #endif ! * Ice global state variables ii = ii + 1 ALLOCATE( ht_i (jpi,jpj,jpl) , a_i (jpi,jpj,jpl) , v_i (jpi,jpj,jpl) , & & v_s (jpi,jpj,jpl) , ht_s (jpi,jpj,jpl) , t_su (jpi,jpj,jpl) , & & sm_i (jpi,jpj,jpl) , smv_i(jpi,jpj,jpl) , o_i (jpi,jpj,jpl) , & & oa_i (jpi,jpj,jpl) , bv_i (jpi,jpj,jpl) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN ht_i = 0 a_i = 0 v_i = 0 v_s = 0 ht_s = 0 t_su = 0 sm_i = 0 smv_i = 0 o_i = 0 oa_i = 0 bv_i = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN ht_i = HUGE(ht_i) a_i = HUGE(a_i) v_i = HUGE(v_i) v_s = HUGE(v_s) ht_s = HUGE(ht_s) t_su = HUGE(t_su) sm_i = HUGE(sm_i) smv_i = HUGE(smv_i) o_i = HUGE(o_i) oa_i = HUGE(oa_i) bv_i = HUGE(bv_i) ENDIF #endif ii = ii + 1 ALLOCATE( u_ice(jpi,jpj) , v_ice(jpi,jpj) , & & vt_i (jpi,jpj) , vt_s (jpi,jpj) , at_i (jpi,jpj) , ato_i(jpi,jpj) , & & et_i (jpi,jpj) , et_s (jpi,jpj) , tm_i (jpi,jpj) , bvm_i(jpi,jpj) , & & smt_i(jpi,jpj) , tm_su(jpi,jpj) , htm_i(jpi,jpj) , htm_s(jpi,jpj) , & & om_i (jpi,jpj) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN u_ice = 0 v_ice = 0 vt_i = 0 vt_s = 0 at_i = 0 ato_i = 0 et_i = 0 et_s = 0 tm_i = 0 bvm_i = 0 smt_i = 0 tm_su = 0 htm_i = 0 htm_s = 0 om_i = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN u_ice = HUGE(u_ice) v_ice = HUGE(v_ice) vt_i = HUGE(vt_i) vt_s = HUGE(vt_s) at_i = HUGE(at_i) ato_i = HUGE(ato_i) et_i = HUGE(et_i) et_s = HUGE(et_s) tm_i = HUGE(tm_i) bvm_i = HUGE(bvm_i) smt_i = HUGE(smt_i) tm_su = HUGE(tm_su) htm_i = HUGE(htm_i) htm_s = HUGE(htm_s) om_i = HUGE(om_i) ENDIF #endif ii = ii + 1 ALLOCATE( t_s(jpi,jpj,nlay_s,jpl) , e_s(jpi,jpj,nlay_s,jpl) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN t_s = 0 e_s = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN t_s = HUGE(t_s) e_s = HUGE(e_s) ENDIF #endif ii = ii + 1 ALLOCATE( t_i(jpi,jpj,nlay_i,jpl) , e_i(jpi,jpj,nlay_i,jpl) , s_i(jpi,jpj,nlay_i,jpl) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN t_i = 0 e_i = 0 s_i = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN t_i = HUGE(t_i) e_i = HUGE(e_i) s_i = HUGE(s_i) ENDIF #endif ! * Moments for advection ii = ii + 1 ALLOCATE( sxopw(jpi,jpj) , syopw(jpi,jpj) , sxxopw(jpi,jpj) , syyopw(jpi,jpj) , sxyopw(jpi,jpj) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN sxopw = 0 syopw = 0 sxxopw = 0 syyopw = 0 sxyopw = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN sxopw = HUGE(sxopw) syopw = HUGE(syopw) sxxopw = HUGE(sxxopw) syyopw = HUGE(syyopw) sxyopw = HUGE(sxyopw) ENDIF #endif ii = ii + 1 ALLOCATE( sxice(jpi,jpj,jpl) , syice(jpi,jpj,jpl) , sxxice(jpi,jpj,jpl) , syyice(jpi,jpj,jpl) , sxyice(jpi,jpj,jpl) , & & sxsn (jpi,jpj,jpl) , sysn (jpi,jpj,jpl) , sxxsn (jpi,jpj,jpl) , syysn (jpi,jpj,jpl) , sxysn (jpi,jpj,jpl) , & & STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN sxice = 0 syice = 0 sxxice = 0 syyice = 0 sxyice = 0 sxsn = 0 sysn = 0 sxxsn = 0 syysn = 0 sxysn = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN sxice = HUGE(sxice) syice = HUGE(syice) sxxice = HUGE(sxxice) syyice = HUGE(syyice) sxyice = HUGE(sxyice) sxsn = HUGE(sxsn) sysn = HUGE(sysn) sxxsn = HUGE(sxxsn) syysn = HUGE(syysn) sxysn = HUGE(sxysn) ENDIF #endif ii = ii + 1 ALLOCATE( sxa (jpi,jpj,jpl) , sya (jpi,jpj,jpl) , sxxa (jpi,jpj,jpl) , syya (jpi,jpj,jpl) , sxya (jpi,jpj,jpl) , & & sxc0 (jpi,jpj,jpl) , syc0 (jpi,jpj,jpl) , sxxc0 (jpi,jpj,jpl) , syyc0 (jpi,jpj,jpl) , sxyc0 (jpi,jpj,jpl) , & & sxsal(jpi,jpj,jpl) , sysal(jpi,jpj,jpl) , sxxsal(jpi,jpj,jpl) , syysal(jpi,jpj,jpl) , sxysal(jpi,jpj,jpl) , & & sxage(jpi,jpj,jpl) , syage(jpi,jpj,jpl) , sxxage(jpi,jpj,jpl) , syyage(jpi,jpj,jpl) , sxyage(jpi,jpj,jpl) , & & STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN sxa = 0 sya = 0 sxxa = 0 syya = 0 sxya = 0 sxc0 = 0 syc0 = 0 sxxc0 = 0 syyc0 = 0 sxyc0 = 0 sxsal = 0 sysal = 0 sxxsal = 0 syysal = 0 sxysal = 0 sxage = 0 syage = 0 sxxage = 0 syyage = 0 sxyage = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN sxa = HUGE(sxa) sya = HUGE(sya) sxxa = HUGE(sxxa) syya = HUGE(syya) sxya = HUGE(sxya) sxc0 = HUGE(sxc0) syc0 = HUGE(syc0) sxxc0 = HUGE(sxxc0) syyc0 = HUGE(syyc0) sxyc0 = HUGE(sxyc0) sxsal = HUGE(sxsal) sysal = HUGE(sysal) sxxsal = HUGE(sxxsal) syysal = HUGE(syysal) sxysal = HUGE(sxysal) sxage = HUGE(sxage) syage = HUGE(syage) sxxage = HUGE(sxxage) syyage = HUGE(syyage) sxyage = HUGE(sxyage) ENDIF #endif ii = ii + 1 ALLOCATE( sxe (jpi,jpj,nlay_i,jpl) , sye (jpi,jpj,nlay_i,jpl) , sxxe(jpi,jpj,nlay_i,jpl) , & & syye(jpi,jpj,nlay_i,jpl) , sxye(jpi,jpj,nlay_i,jpl) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN sxe = 0 sye = 0 sxxe = 0 syye = 0 sxye = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN sxe = HUGE(sxe) sye = HUGE(sye) sxxe = HUGE(sxxe) syye = HUGE(syye) sxye = HUGE(sxye) ENDIF #endif ! * Old values of global variables ii = ii + 1 ALLOCATE( v_s_b (jpi,jpj,jpl) , v_i_b (jpi,jpj,jpl) , e_s_b(jpi,jpj,nlay_s,jpl) , & & a_i_b (jpi,jpj,jpl) , smv_i_b(jpi,jpj,jpl) , e_i_b(jpi,jpj,nlay_i,jpl) , & & oa_i_b (jpi,jpj,jpl) , u_ice_b(jpi,jpj) , v_ice_b(jpi,jpj) , STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN v_s_b = 0 v_i_b = 0 e_s_b = 0 a_i_b = 0 smv_i_b = 0 e_i_b = 0 oa_i_b = 0 u_ice_b = 0 v_ice_b = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN v_s_b = HUGE(v_s_b) v_i_b = HUGE(v_i_b) e_s_b = HUGE(e_s_b) a_i_b = HUGE(a_i_b) smv_i_b = HUGE(smv_i_b) e_i_b = HUGE(e_i_b) oa_i_b = HUGE(oa_i_b) u_ice_b = HUGE(u_ice_b) v_ice_b = HUGE(v_ice_b) ENDIF #endif ! * Ice thickness distribution variables ii = ii + 1 ALLOCATE( hi_max(0:jpl), hi_mean(jpl), STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN hi_max = 0 hi_mean = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN hi_max = HUGE(hi_max) hi_mean = HUGE(hi_mean) ENDIF #endif ! * Ice diagnostics ii = ii + 1 ALLOCATE( diag_trp_vi(jpi,jpj), diag_trp_vs (jpi,jpj), diag_trp_ei(jpi,jpj), & & diag_trp_es(jpi,jpj), diag_trp_smv(jpi,jpj), diag_heat (jpi,jpj), & & diag_smvi (jpi,jpj), diag_vice (jpi,jpj), diag_vsnw (jpi,jpj), STAT=ierr(ii) ) #if defined key_init_alloc_zero IF (ierr(ii)==0) THEN diag_trp_vi = 0 diag_trp_vs = 0 diag_trp_ei = 0 diag_trp_es = 0 diag_trp_smv = 0 diag_heat = 0 diag_smvi = 0 diag_vice = 0 diag_vsnw = 0 ENDIF #elif defined key_init_alloc_huge IF (ierr(ii)==0) THEN diag_trp_vi = HUGE(diag_trp_vi) diag_trp_vs = HUGE(diag_trp_vs) diag_trp_ei = HUGE(diag_trp_ei) diag_trp_es = HUGE(diag_trp_es) diag_trp_smv = HUGE(diag_trp_smv) diag_heat = HUGE(diag_heat) diag_smvi = HUGE(diag_smvi) diag_vice = HUGE(diag_vice) diag_vsnw = HUGE(diag_vsnw) ENDIF #endif ice_alloc = MAXVAL( ierr(:) ) IF( ice_alloc /= 0 ) CALL ctl_warn('ice_alloc: failed to allocate arrays.') ! END FUNCTION ice_alloc #else !!---------------------------------------------------------------------- !! Default option Empty module NO LIM sea-ice model !!---------------------------------------------------------------------- #endif !!====================================================================== END MODULE ice