
Building and RunningBuilding and Running

EC-Earth 3EC-Earth 3

A short guideA short guide

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Table of Contents
Introduction..1

Preparations...1

Technical Prerequisites..1

Getting the Sources..2

Building... 3

Build Configuration..3

Compiling..4

Compiling Oasis..4

Compiling XIOS...5

Compiling NEMO...5

Compiling IFS..6

Compiling the Runoff-mapper..6

Compiling the AMIP-reader...7

Compiling TM5-MP..7

Compiling LPJ-Guess...7

System-wide EC-Earth 3 Installations...8

Providing EC-Earth 3 Experiments with Initial Data...9

Running EC-Earth 3...9

Run Configuration with ec-conf...10

Setup Prerequisites for Using ec-conf...10

Generating Run-scripts with the ec-conf Command Line Interface..................................10

Generating run-scripts with the ec-conf Graphical User Interface....................................11

General ec-conf Hints..11

Running EC-Earth 3 Experiments..12

Running EC-Earth 3 on a specific platform...12

Further configuration..12

Running an ESM model..12

Running IFS standalone...13

Saving Initial Conditions during a run..14

Background information on Initial Conditions..14

How to save Initial Conditions during a run..14

Restrictions and issues..15

Running EC-Earth 3 Experiments with Autosubmit...15

Setup prerequisites for using Autosubmit..15

Configuring Autosubmit experiment...16

i

ii

iii

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Introduction
EC-Earth1 is a global coupled climate model, which integrates a number of compo-
nent models in order to simulate the earth system. It is developed by a consortium of
European research institutions, which collaborate in the development of a new Earth
System Model. The goal of EC-Earth is to build a fully coupled Atmosphere-Ocean-
Land-Biosphere model, usable from seasonal to decadal climate prediction and cli-
mate projections.

 EC-Earth 3 is the most recent model generation and the one described here. The
intention of this guide is to document mostly technical aspects that are of importance
when getting started with EC-Earth 3.

In order to gather the latest and most relevant information about EC-Earth 3 de-
velopment in one place, a Development Portal has been established. This is a Web-
based service, which can be reached via the following URL:

https://dev.ec-earth.org

The site includes further documentation, issue tracking facilities, and access to
the version control system. It is strongly recommended to refer to the Development
Portal first when any concerns or requests need to be addressed.

Preparations

Technical Prerequisites

A number of tools and libraries are needed to configure and build EC-Earth 3:

Prerequisite Notes

Compiler/Languages

GNU make GNU make version 3.81 or more is needed to build IFS

Fortran A Fortran 77/90/95 compliant compiler with preprocessing ca-
pabilities is needed.

C/C preprocessor

Python The half-automatic build configuration tool ec-conf is tested
with Python v2.4.3 and above. It will, however, not work with
Python 3

Bash Used by FCM

Perl Used by FCM

Libraries

MPI

BLAS/LAPACK

NetCDF

GRIB API Needed for IFS GRIB I/O. Version 1.12 has been tested but oth-

1) W. Hazeleger et al (2010) EC-Earth: a seamless Earth system prediction approach in action.
Bull Am Meterol Soc 91:1357–1363. doi:10.1175/2010BAMS2877.1

1

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Prerequisite Notes

ers may work as well2. Download from
https://software.ecmwf.int/wiki/display/GRIB/Releases/

GRIBEX Needed for IFS GRIB I/O. Tested with version 370. GRIBEX used
to be provided at ECMWF, but is no longer available from their
download site. A copy of version 370 is located at the EC-Earth
3 SVN server at /ecearth3/vendor/gribex.

HDF4 Required for TM5-MP

HDF5 Needed for netCDF4, which is needed for TM5. Should be com-
piled with parallel IO enabled.

Other tools

makedepf903 Needed, if dependency files for the IFS code need to be created
(because they where removed or invalidated by a change of
source files). This tool is provided both pre-compiled (for Linux)
and as source code in the EC-Earth package.

TkInter (Python module) Needed if the graphical interface of the ec-conf tool is used.

GNU date (64-bit version) Needed for full run-script functionality.

Cmake Needed to compile LPJ-Guess

Getting the Sources

EC-Earth 3 is distributed in source form, hence, it must be configured for the plat-
form in use and built (compiled and linked) by the user. The principal distribution
method for the source code is to access the Subversion (SVN) server, which is part of
the EC-Earth 3 Development Portal. The SVN server is located at the URL

https://svn.ec-earth.org

In order to understand the SVN repository structure in more detail, please refer
to the Wiki article at

https://dev.ec-earth.org/projects/ecearth3/wiki/ \
EC-EARTH_3_Version_control_strategy

Note that a backslash (\) has been used above to indicate that the line has been split
in this guide for better readability.

The following instructions assume that the most recent status in the development of
EC-Earth 3 (known as trunk) is to be accessed. For other purposes, e.g. for accessing
a released version, the URL's have to be adjusted accordingly. For an up-to-date list-
ing of available releases, check

> svn ls https://svn.ec-earth.org/ecearth3/tags

There is a certain freedom in how to lay out the source code and runtime directo-
ries in the user's file system. Therefore, the following instructions may be modified,
provided that the changes are consistent.

The following command provides a complete structure of the EC-Earth 3 source,
runtime, and documentation directories:

2) As of May 2017, version 1.17.0 at ECMWF prevents compilation of LPJ-Guess.
3) Available at http://personal.inet.fi/private/erikedelmann/makedepf90 under the
GNU General Public License version 2.

2

EC-EARTH 3: Building and Running Short Guide (04/06/19)

> svn checkout --username USER_NAME --password PASSWORD \
https://svn.ec-earth.org/ecearth3/trunk ECEARTH3_BASE_DIR

Note that the highlighted terms have to be replaced by the Development Portal
account details (USER_NAME, PASSWORD) and a user chosen directory name
(ECEARTH3_BASE_DIR), which will hold all of the EC-Earth 3 components.

For the remainder of this guide, it will be assumed that the source code was ob-
tained by the above procedure, thus, the directory structure is expected to follow the
mentioned layout.

Please refer to the documentation of the SVN client that is being used about how
the user name and password information is handled. It might be possible to store the
account details, thus avoiding specifying them repeatedly. However, be aware of secu-
rity implications.

Building

Build Configuration

Once the source code of EC-Earth 3 is in place, the systems needs to be configured
for building. The recommended method for build configuration is to use the ec-conf
tool, in fact, this is the only method described in this guide. Manual configuration is,
however, possible by editing the ec-conf configuration files by hand, even though this
is an error-prone procedure.

The ec-conf tool is provided in the ECEARTH3_BASE_DIR/sources/util/ec-conf
sub-directory and it comes with it's own documentation in ECEARTH3_BASE_DIR/doc.
The usage of ec-conf is only very briefly explained here, as far as it is needed to un-
derstand the EC-Earth 3 build configuration process.

All configurable parameters are collectively stored in an XML data base file,
which is to be adapted by the user according to the computing platform and build en-
vironment. For a detailed description of the XML file syntax, please refer to the ec-
conf user guide. Once the XML data base file has been adapted, it is subsequently
used by the ec-conf tool to create the required configuration files for all components.
Hence, from a user's perspective, a single place, single syntax configuration is
achieved.

Summarising, the usage of ec-conf comprises two stages, namely

○ Adapting the configuration parameter in the XML data base file, and

○ Running the ec-conf tool to create the actual configuration files.

Any editor that handles plain-text files can be used during the first step. There-
after, the second step facilitates the command line interface of ec-conf. Alternatively,
both steps can be dealt with in one go by utilising the ec-conf graphical user interface
(GUI) by using the --gui option. Please refer to the ec-conf user guide for a detailed
description of entire process.

 When the sources are obtained according to the instructions in the previous
chapter, and XML data base file is provided at

ECEARTH3_BASE_DIR/sources/config-build.xml

as a basis for build configuration. This file needs to be complemented with a Platform

3

EC-EARTH 3: Building and Running Short Guide (04/06/19)

section suitable for the user's computing platform and the configuration parameters
must be adjusted for the particular environment. It is strongly recommended to add
new Platform sections when needed rather than re-using existing ones. This is to
make sure that platform-dependent configurations are persistently documented.

Assuming that the XML data base file has been adjusted (and that
ECEARTH3_BASE_DIR is the current directory), the ec-conf command line interface is in-
voked as

> cd sources
> ec-conf --platform PLATFORM config-build.xml

provided that the ec-conf command is present in the search path. The PLATFORM argu-
ment refers to the corresponding Platform section in the XML file. Upon completion
of this command, all configuration files are created in their proper places. It is impor-
tant to repeat that step every time the configuration is changed. Note that ec-conf
may display warnings about empty parameter values. As long as the corresponding
parameters are deliberately left without values (e.g. because a certain platform does
not support or need a specific parameter), these warnings can be ignored.

Compiling

Assuming that the build configuration has been carried out with the ec-conf tool, the
compilation of the component models is the next step. As both IFS and NEMO depend
on OASIS, the coupler software has to be compiled first. Furthermore, NEMO de-
pends on XIOS, so XIOS has to be compiled before NEMO. An example compilation
sequence is OASIS, XIOS, NEMO, IFS, Runoff-mapper.

For forced atmosphere experiments (i.e. IFS-standalone runs), the AMIP-reader has
to be compiled. This can be done after the other components.

For the Earth System Model (ESM), TM5-MP and/or LPJ-Guess must be compiled.
This can be done in any order, but after OASIS.

Compiling Oasis

Provided that ECEARTH3_BASE_DIR/sources is the current directory, the build process
is started from the build directory of OASIS:

> cd oasis3-mct
> cd util/make_dir

where compilation of the libraries and the executable is initiated by the command

> make BUILD_ARCH=ecconf -f TopMakefileOasis3

--> Using BUILD_ARCH=ecconf
--> Reading configuration from

[... more output follows ...]

make[1]: Leaving directory ...

Upon successful completion of the process (i.e. when no errors are displayed), the
OASIS libraries, module files, and the executable can be found below the
ECEARTH3_BASE_DIR/sources/oasis3-mct/ecconf directory.

4

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Compiling XIOS

XIOS (short for XML-I/O-Server) is an I/O management software for climate models.
It handles output of diagnostics as well as temporal and spatial post-processing oper-
ations. XIOS is currently used by the ocean component, NEMO, of EC-Earth, with the
intention to extent it's use to other component models in the future.

Two major versions of XIOS are currently available: XIOS1 and XIOS2. The
NEMO ocean model in EC-Earth uses XIOS2, which is provided as part of the EC-
Earth source tree.

Provided that ECEARTH3_BASE_DIR/sources is the current directory, XIOS2 is com-
piled by the following commands:

> cd xios-2

> ./make_xios --arch ecconf --use_oasis oasis3_mct <OPTIONAL_ARGUMENTS>

Optional arguments:

--netcdf_lib netcdf4_seq - If XIOS is only used in sequential mode
--full - To recompile everything
--job <N> - For parallel make with N jobs

It is recommended to compile XIOS2 with a parallel NetCDF library (by not using
the --netcdf_lib option or specifying --netcdf_lib netcdf4_par). Using parallel
NetCDF allows the XIOS servers to run in parallel mode, which may be needed on
machines with little memory per node. The parallel mode may also be beneficial for
the computational performance of the I/O subsystem.

Compiling NEMO

NEMO (from version 3.3 onwards) uses the Flexible Configuration Management
(FCM)4 for compilation. The FCM configuration file for NEMO has been adapted to
support ec-conf and it is recommended to use this tool to build NEMO within EC-
Earth 3.

The main script for compiling NEMO is located in the CONFIG subdirectory

> cd nemo-3.6
> cd CONFIG

and it is used like this:

> ./makenemo -n ORCA1L75_LIM3 -m ecconf -j NUM_PROC

By applying the above command line, it is assumed that ec-conf has been success-
fully run and that the default configuration (comprising the ORCA1 ocean grid with
75 vertical levels and the LIM3 sea ice model) is to be built. Other configurations are
available, which can be listed (among other information) by

> ./makenemo -h

Usage : makenemo [-h] [-n name] [-m arch] [-d dir1 dir2] [-r conf] [-j No]

[... more output follows ...]

Available configurations :

ORCA1L75_LIM3 [...]

4) http://cms.ncas.ac.uk/index.php/fcm

5

EC-EARTH 3: Building and Running Short Guide (04/06/19)

ORCA1L75_LIM3_standalone [...]
ORCA025L75_LIM3 [...]
ORCA025L75_LIM3_standalone [...]
ORCA1L75_LIM3_PISCES_standalone [...]
ORCA1L75_OFF_PISCES [...]

Note that the compilation of NEMO (when calling the ./makenemo script as shown
before), it is possible to specify the number of parallel compilation processes with the
-j NUM_PROC command line argument.

When compilation has succeeded, a line similar to

Build command finished on <SOME_DATE>.

should appear and the NEMO executable, nemo.exe, is located in the
ORCA1L75_LIM3/BLD/bin subdirectory (or a similar one corresponding to the chosen
configuration). Note that it is possible to compile and keep more than one configura-
tion of NEMO at a time. In fact, this is supported by the EC-Earth 3 run scripts.

Compiling IFS

The IFS source files and build scripts are located in the ifs-36r4 subdirectory of
ECEARTH3_BASE_DIR/sources:

> cd ifs-36r4

All makefiles have been configured by ec-conf, hence, the build step can be
started immediately. As a first step, all IFS libraries are compiled. The build process
supports parallel make, which is activated by the -j command line argument. The
number of parallel compilation processes, which can be used efficiently, has to be es-
tablished experimentally on the build platform, but it is probably less than ten. The
make command to compile the libraries reads

> make BUILD_ARCH=ecconf -j NUM_PROC lib

After all libraries are built successfully, the IFS executable (the ifs-master) has to
be linked. There is no advantage in using parallel make in that step as only one com-
pilation instance is involved:

> make BUILD_ARCH=ecconf master

When the linking process has completed, the IFS executable will be found in the
bin subdirectory.

NOTE: Due to the current structure of the makefiles, it is not possible to specify both
the lib target and the master target at the same time in the make command line.

Compiling the Runoff-mapper

The Runoff-mapper is a small program that splits the run-off from IFS into a run-off
and a calving contribution, and remaps the fields onto the NEMO grid. It is compiled
by the following commands:

> cd runoff-mapper/src
> make

6

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Compiling the AMIP-reader

The AMIP-reader is used for IFS-standalone experiments and provides IFS with forc-
ing data via OASIS. The compilation of the AMIP-reader is done with:

> cd amip-forcing/src
> make

Compiling TM5-MP

The sources and the set-up script to compile TM5-MP are in the tm5mp subdirec-
tory of ECEARTH3_BASE_DIR/sources:

> cd tm5mp

By running ec-conf on the config-build.xml, the file ecconfig-ecearth3.rc is cre-
ated. It is the input configuration file for TM5 set-up script, which you invoke as fol -
lows:

> ./setup_tm5 -j NUM_PROC ecconfig-ecearth3.rc

A list of available options can be listed with:

> ./setup_tm5 -h

Of importance for EC-Earth are -n (or --new) also known as realclean in many
programs to recompile the entire code, and -c (or --clean) to recompile only part of
the code (the generic code for reading HDF/netCDF files is left as is).

When compilation succeeds, the output ends up with lines like those:
[INFO] For first glance on settings and results:
[INFO]
[INFO] # run diadem postprocessor:
[INFO] ./tools/diadem/py/diadem ecconfig-ecearth3.rc
[INFO]
[INFO] End of script at 2014-09-17 09:02:34 .
[INFO]

Two different executables can be compiled: one with the NOx-OH-HC-aerosols at-
mospheric chemistry activated, the other concerned only with CO2. The switch is
done in the config-build.xml with the parameter "TM5_CO2_ONLY" of your plat-
form. Both executables can be compiled without affecting each other: just modify,
parse the config-build.xml file and call setup_tm5 again. And the executables are
found in:

tm5mp/build/src/appl-tm5.x

tm5mp/build-co2/src/appl-tm5-co2.x

Compiling LPJ-Guess

The sources of LPJ-Guess are in the lpjg subdirectory of
ECEARTH3_BASE_DIR/sources:

> cd lpjg/build

When running ec-conf, the file lpjg/CMakeLists.txt is created. It is the config-
uration file cmake, which you invoke as follows:

7

EC-EARTH 3: Building and Running Short Guide (04/06/19)

> cmake ..

> make

When compilation succeeds, the output ends up with these lines:
[100%] Building CXX object CMakeFiles/guess.dir/command_line_version/main.cpp.o
Linking CXX executable guess
[100%] Built target guess

And the executable is:

lpjg/build/guess

With this, all the EC-Earth components have been compiled and the model is (al-
most) ready to run.

System-wide EC-Earth 3 Installations

It is rather easy to install and maintain a system-wide EC-Earth 3 installation, be-
cause the model source code and runtime environment are largely independent of
each other. System-wide installations can make it easier for new users to get started
(because the building step is skipped) and can provide a higher level of consistency
and efficiency for coordinated experiments.

To install EC-Earth system-wide, the model source code is downloaded from the
SVN server to a central place, ECEARTH3_BASE_DIR, and built as described in the previ-
ous sections of this document. Users need to have read-access to ECEARTH3_BASE_DIR.

Further more, the initial data sets are downloaded to another central place,
INI_DATA_DIR, as described in the next section, “Providing EC-Earth 3 Experiments
with Initial Data”. The users to run EC-Earth experiments need obviously also read
access to INI_DATA_DIR.

It is an advantage for users if both ECEARTH_SRC_DIR (derived from
ECEARTH3_BASE_DIR) and INI_DATA_DIR are correctly specified in the SVN repository
version of the config-run.xml file for the particular platform. If that is the case, the
user does not need to modify these entries after downloading the runtime environ-
ment from the SVN server.

Once the model source code and initial data is in place, users just have to check
out the runtime environment from the SVN server:

> svn checkout --username USER_NAME --password PASSWORD \
https://svn.ec-earth.org/ecearth3/trunk/runtime/classic \
EXPERIMENT_DIR

Thus, a copy of the classic runtime environment of the trunk is created in the
EXPERIMENT_DIR directory. Note that this is much faster than checking out the com-
plete source code of EC-Earth. With the runtime environment in place (and assuming
that ECEARTH_SRC_DIR and INI_DATA_DIR have correct values for the particular plat-
form), the user is ready to configure and run experiments as explained later in sec-
tion “Running EC-Earth”.

It is, of course, possible to install another version of EC-Earth than just the trunk
that is used in the example above. However, it is important that the versions of the
source code in ECEARTH3_BASE_DIR, the initial data in INI_DATA_DIR, and the user's
runtime environment match. There may be changes in the EC-Earth source code that
lead to inconsistencies in the runtime environment across versions (such as changed

8

EC-EARTH 3: Building and Running Short Guide (04/06/19)

namelists). It is the responsibility of the maintainer of the the system-wide installa-
tion to make sure compatible versions are used.

Providing EC-Earth 3 Experiments with Initial Data

EC-Earth 3 experiments need a number of data files for configuration, initialisation,
and forcing. These files are not part of the EC-Earth source code and, thus, cannot be
downloaded from the SVN server that provides the source code. The necessary files
are bundled in data sets and provided by other means than SVN.

To allow for validation of the data, each file is checksummed and the checksums
are stored in the SVN repository. This facilitates data provenance, both to check the
validity and to keep a historical records of the file changes. The checksum files are lo-
cated in the ECEARTH3_BASE_DIR/runtime/datacheck directory, and they can be used
to make sure the data is consistent with the current version of the code:

> cd INI_DATA_DIR
> md5sum -c ECEARTH3_BASE_DIR/runtime/datacheck/ece-data-base.md5

The above command checks the validity of the ece-data-base.md5 data set, as-
suming the data has been downloaded to INI_DATA_DIR.

Beside the actual checksums, the checksum files provide also a maintainer of the
corresponding data set as well as a download URL:

> head ece-data-base.md5

Checksums (md5sum) for ece-data-base.tgz
Verify files with "md5sum -c ece-data-base.md5" while in the inidata \
directory
#
Download URL: \
http://exporter.nsc.liu.se/9e71db1b1d1541a189a5d2bf8ab046d0/ece-data-base.tgz
Download URL: \
rsync://exporter.nsc.liu.se/9e71db1b1d1541a189a5d2bf8ab046d0/ece-data-base.tgz
Maintainer: uwe.fladrich@smhi.se
#

d390e563f044e53e264109767615ad33 ifs/rtables/rtable_2106
d390e563f044e53e264109767615ad33 ifs/rtables/rtablel_2159
46266ff4cf07500a53b5d9a1b282a2ff ifs/rtables/rtable_12213
[...]

Note that the above output is just given as an example. Do not assume that the
actual information is correct for times other than at this writing.

Running EC-Earth 3
Setting up and running experiments with EC-Earth is a pretty complex task. Part of
the difficulty stems from the great variety of experiment configurations and computa-
tional platforms. It is next to impossible to provide a runtime environment that can
handle all desirable configurations, while at the same time maintaining a reasonable
complexity. Thus, EC-Earth comes with a runtime environment that provides support
for a set of basic experiment types and platforms. EC-Earth users should be prepared
to use the provided scripts as a basis for extensions to their own needs.

The EC-Earth runtime environment comes in two flavours: One (called classic)

9

EC-EARTH 3: Building and Running Short Guide (04/06/19)

with scripts that are supposed to be manually submitted to job schedulers, and an-
other (called autosubmit) that will work well with the Autosubmit5 work-flow man-
ager.

The description below corresponds to the classic runtime environment.

Run Configuration with ec-conf

In order to run EC-Earth 3, run scripts have to be prepared to reflect the current
platform and the experiment at hand. The recommended way of doing this is by using
the ec-conf tool, much in the same way as when building EC-Earth 3. The ec-conf tool
is provided in the ECEARTH3_BASE_DIR/sources/util/ec-conf sub-directory. Because
ec-conf has its own documentation in the ECEARTH3_BASE_DIR/doc directory only the
usage of the tool, not the tool itself, is described here.

Setup Prerequisites for Using ec-conf

Preparing the run scripts with the ec-conf tool on a specific platform requires the
user to provide:

○ A platform dependent template file, which provides the shell functions
configure(), launch(), and finalise(). This functions are required to handle,
respectively, any platform dependent configuration, launch mechanism for an
MPMD MPI job, and, if necessary, post run operations.

○ All configurable parameters, e.g., platform dependent run time paths and spe-
cific experiment settings. These have to be stored in an XML data base file for
the use with ec-conf.

The first step is needed only once for each platform. Existing template files are lo-
cated (again assuming the earlier defined directory structure) at

ECEARTH3_BASE_DIR/runtime/classic/platform/PLATFORM.cfg.tmpl

and can server as templates for new platforms.

In the second step, some of the settings in the XML data base file are platform
dependent (RUN_DIR, PROC_PER_NODE, ...) and some of them need to be updated accord-
ing to each experiment (EXP_NAME, RUN_START_DATE, ...).

An example XML database file for the run scripts is provided at

ECEARTH3_BASE_DIR/runtime/classic/config-run.xml

This file, together with the existing template files and the documentation on the
XML database file structure in the separate ec-conf documentation, serves as a guide
when setting up EC-Earth 3 on a new platform.

Generating Run-scripts with the ec-conf Command Line Interface

Assuming the user has a template file for a given platform and has filled out all the
configurable parameters in the XML database file in his/her favourite text editor, the
actual run scripts are created by issuing,

> ec-conf --platform PLATFORM RUN_CONFIG_FILE

5) http://autosubmit.readthedocs.io

10

EC-EARTH 3: Building and Running Short Guide (04/06/19)

As when building EC-Earth 3, PLATFORM refers to the appropriate platform section
in the XML file in use and RUN_CONFIG_FILE is the XML database file. This command
will create run scripts, such as, ece-esm.sh, the ESM configuration run script.

Other scripts are created as well, depending on the exact content of the ec-conf
XML file.

Generating run-scripts with the ec-conf Graphical User Interface

Alternatively, the run-scripts
can be prepared with the
Graphical User Interface
(GUI) of ec-conf, which pro-
vides all of the functionality of
the Command Line Interface.
In fact, the GUI might turn
out to be preferable when
used to create run-scripts in a
more interactive way. It is, for
example, possible to generate
a number of run-scripts,
which differ in in just a few,
specific aspects, such as the
start date of the experiments.
Thus, the run-scripts can later
be used in a batch-like fashion

without the need for manually copying and modifications.

The ec-conf GUI is launched with the command

> ec-conf --gui RUN_CONFIG_FILE

The ec-conf GUI also allows the user to interactively update the XML database
file, save it for future use and generate the run-scripts. See the ec-conf documenta-
tion for details on the GUI usage.

General ec-conf Hints

Some general advice for using ec-conf include:

○ Make sure ec-conf is in your search path

○ If you are using relative paths in the RUN_CONFIG_FILE, make sure they are con-
sistent with your current working directory used when running ec-conf

○ ec-conf warnings are prefixed *WW*, and output to stderr. Check if the warning
is relevant to your particular case, if not, it can be ignored

○ ec-conf errors are prefixed *EE* and cannot be ignored as no run-scripts are
generated

11

The ec-conf GUI while being used for run-script generation

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Running EC-Earth 3 Experiments

Running EC-Earth 3 on a specific platform

The EC-Earth 3 Wiki includes instructions about how to submit the generated run-
scripts on a number of platforms. The Wiki also points out where the default initial
data files can be found for that platform. Users who are setting up EC-Earth 3 on new
platforms are encouraged to add corresponding information to the Wiki.

Further configuration

There are three levels of configuration available for an experiment. The principal user
interface is the config-run.xml described in the previous section. Additional settings
are available through the config variable found at the top of the scripts generated
when calling ec-conf. This level of configuration is mainly used for switching off/on
various component of the Earth System Model (see “Running an ESM model” section
hereafter) or options like stochastic physics. Finally, experienced users can also mod-
ify the various namelists to their need. You are referred to the models respective doc-
umentation for further details.

Running an ESM model

The ece-esm.sh script lets you run EC-Earth in at least eight different
configurations. To switch between them, just change the config variable found at the
top of the script. This variable lists the components to run. Options can be added to
each component with a colon ":". For example, the following configuration will let you
run IFS with the AMIP-reader and LPJ-Guess:

config="ifs amip lpjg:fdbck"

Note that the fdbck option is added to LPJ-Guess. Without it, IFS would drive LPJ-
Guess, but not receive any feedback.

The following configurations will work with forced SST and sea ice cover:

config Comment

ifs amip "forced GCM": IFS + AMIP reader

ifs amip lpjg:fdbck tm5:co2 "C-cycle": forced GCM + LPJ-Guess + TM5

ifs amip lpjg:fdbck "Veg": forced GCM + LPJ-Guess

ifs amip tm5:chem,o3,ch4,aero "AerChem": forced GCM + TM5

To couple the ocean model NEMO instead of reading SST/sea-ice forcings, re-
place “amip“ with “nemo lim3 rnfmapper xios:detached oasis“ in the table, which
brings us to a total of eight configurations.

The following table gives a brief description of all available components and their
options:

12

EC-EARTH 3: Building and Running Short Guide (04/06/19)

config Comment
ifs Run the IFS model.

amip
SST and sea-ice concentration reader.
Must be used if IFS is run standalone (i.e. no NEMO)

nemo lim3 Run NEMO with embedded LIM3 sea-ice model.
tm5:chem IFS drives the full chemistry version of TM5-MP
tm5:co2 IFS drives the CO2-only version of TM5-MP

tm5:o3,ch4,aero
TM5-MP feeds back O3, CH4 and Aerosols concentrations
and optical properties to IFS.
Effective only if tm5:chem is used.

lpjg
IFS drives LPJ-Guess (soil moisture and temperature, pre-
cipitation, snow,..)

lpjg:fdbck
IFS drives LPJ-Guess, and LPJ-Guess sends back LAIs,
vegetation type and fraction to IFS

rnfmapper
Run-off mapper that sends run-off from IFS to NEMO.
Required if they are coupled.

xios:detached XIOS output server used by NEMO (in detached mode).

oasis
OASIS3-MCT coupler, needed in coupled and IFS-stand-
alone configurations.

ifs:atmnudg
IFS with nudging. See the “IFS atmospheric nudging” Wiki
page on the EC-Earth Portal.

ifs:sppt
IFS with stochastic physics. See the “SPPT stochastic per-
turbations for IFS” Wiki page on the EC-Earth Portal.

nemo:start_from_restart Use NEMO restart files instead of restart or cold-start.

When coupling TM5, either tm5:chem or tm5:co2 should be used. Any of the
o3,ch4,aero feedback on IFS can be switched off by removing it.

Running IFS standalone

As mentioned above, the atmospheric component of EC-Earth 3 can be run as a
standalone experiment and typically no special preparations are necessary for
launching such experiment. The ece-esm.sh run-scrip, when configured for IFS-only
runs, will start the job and use the necessary forcing files which are packaged to-
gether with the initial data files for each resolution. See the Wiki for details on how to
access EC-Earth 3 initial files.

By default forcing over sea includes prescribed SST and sea-ice cover. If there is a
need to prescribe sea-ice temperature as well it is necessary to,

1. Set LRDISTL1=TRUE in the namelist NAMMCC

2. Update the ICMSEAINIT-file according to

Without prescribed sea-ice temperature

paramId shortName edition centre dataDate level

34 sst 1 ecmf 19791201 0

31 ci 1 ecmf 19791201 0

13

EC-EARTH 3: Building and Running Short Guide (04/06/19)

34 sst 1 ecmf 19800101 0

31 ci 1 ecmf 19800101 0

… and so on …

With prescribed sea-ice temperature

paramId shortName edition centre dataDate level

34 sst 1 ecmf 19791201 0

31 ci 1 ecmf 19791201 0

35 istl1 1 ecmf 19791201 0

34 sst 1 ecmf 19800101 0

31 ci 1 ecmf 19800101 0

35 istl1 1 ecmf 19800101 0

… and so on …

Saving Initial Conditions during a run

Background information on Initial Conditions

Initial Conditions (ICs) are files which are used to initialize the components of the EC-
Earth model at specific states. IC files are used, for example,. for seasonal prediction
experiments which are initialized at various start dates with given atmosphere (IFS),
ocean (NEMO) and sea-ice (LIM) states. The Initial Data files contain ICs for IFS and
the OASIS coupler for a number of years, whereas NEMO is initialized by default
from climatology. Initial conditions for other components (e.g. TM5, LPJ-Guess) are
also available.

Except for IFS, ICs are identical to restart files which are used to save the model
state at the end of a leg, and read at the start of the next leg. In the case of IFS,
restart files must be used on the same machine and processor configuration that they
were generated, therefore they are not portable. They cannot be changed to generate
ensemble member using small perturbations.

How to save Initial Conditions during a run

The save_ic tool of EC-Earth can be used to generate initial conditions (ICs) for IFS,
NEMO and the OASIS coupler files for IFS and NEMO at any time during an experi-
ment. For example, model states can be saved at several intervals for generating ICs
for seasonal prediction experiments, or at the end of a long spin-up run for starting
control/historical experiments on other machines.

Activating the save_ic tool is done by adding save_ic to the config variable at
the top of the run script. save_ic has two options available:

○ save_ic:end_leg (save ICs at the end of every leg)

○ save_ic:end_run (save ICs at the end of the run)

By default, without an option, ICs are saved at given offsets from the leg start,
possibly if conditions are met. These offset(s) and condition(s) must be coded in the

14

EC-EARTH 3: Building and Running Short Guide (04/06/19)

run script or in the save_ic_get_config() function in
runtime/classic/libsave_ic.sh, consult this function for more details. If using the
Autosubmit runtime, the SAVE_IC variable is used to activate the save_ic tool (valid
values are FALSE, TRUE, end_leg and end_run). SAVE_IC_OFFSET and SAVE_IC_COND con-
trol the offset and condition.

Restrictions and issues

The following restrictions apply at time of writing:

○ only IFS, NEMO and OASIS (for IFS/NEMO) ICs are generated

○ first time step of run is not supported

○ only one IC per month is supported (to simplify the IFS filter)

○ maximum 9 ICs per leg (because of current restrictions in NEMO namelist)

○ if requesting model-level output for IFS (e.g. for PRIMAVERA), there will be no
model-level variables in output on the time step which ICs are requested, un-
less requesting the last time step of the leg

Running EC-Earth 3 Experiments with Autosubmit

Autosubmit is a Python tool to create, manage and monitor experiments in diverse su-
percomputing environments. It has support for experiments running in more than one
supercomputing platform and for different work flow configurations, such as multi-
member ensembles including post-processing and archiving tasks. Autosubmit man-
ages the submission of jobs to queue scheduler remotely via ssh, until there is no job
left to be run. Additionally, it also provides features to suspend, resume, restart and
extend similar experiment at later stage.

Setup prerequisites for using Autosubmit

Autosubmit 3.10 version is available via PyPi package under the terms of GNU Gen-
eral Public License. You can find help about how to install and use Autosubmit and a
list of available commands in the on-line documentation:

http://www.bsc.es/projects/earthscience/autosubmit

Prerequisites: Only a few pre-installed tools/libraries are necessary to use Auto-
submit:

○ Git, and/or subversion, for repository management

○ ssh/scp/rsync, for remote control

○ Bash, or any kind of linux shell (on HPC), for script execution

○ SQLite, for database management

○ Python >=2.7, for script configuration (argparse, dateutil, pyparsing, numpy,
pydotplus, matplotlib and paramiko must be available for Python runtime).

The Building section includes instructions about how EC-Earth model can be
made available on different HPC.

Thereafter, a multi-member ensemble can be run and monitored with Autosubmit,
for example from a laptop (host machine). The host machine has to be able to access

15

EC-EARTH 3: Building and Running Short Guide (04/06/19)

HPC via password-less ssh.

Before creating an Autosubmit experiment you have to configure database and
path for Autosubmit. It can be done at host, user or local level (by default at host
level). If it does not exist, creates a repository for experiments: For example:

/home/Earth/autosubmit

To create a repository for experiments and database, run the commands:

> autosubmit configure
> autosubmit install

To create a new experiment, run the command:

> autosubmit expid --HPC HPCname --description Description

HPCname is the name of the main HPC platform for the experiment: it will be the
default platform for the tasks. Description is a brief experiment description.

This command assigns a unique four character identifier (xxxx, names starting
from a letter, the other three characters) to the experiment and creates a new folder
in the experiments directory tree.

Configuring Autosubmit experiment

An EC-Earth multi-member ensemble climate simulation workflow, due to its
length, has to be composed into pieces (or chunks, or legs). Each chunk can be di-
vided into pre-processing, parallel run and post-processing. All these pieces can be
submitted, following a given order, to a batch scheduler: we call them jobs.

By default an Autosubmit experiment comes with complete workflow definition. In
this guide we modify the default to be simpler. The example 1 (see below) only in-
cludes one job for local setup and two jobs of parallel run without pre and post-pro-
cessing.

EC-Earth 3 includes classic runtime where the legs can be run using the launch
function.

EC-Earth 3 includes platform dependent template files and configurable parame-
ters, prepared to run with Autosubmit under the location:

ECEARTH3_BASE_DIR/runtime/autosubmit

The Run configuration with ec-conf section includes instructions about how to
prepare the run-scripts to reflect the current platform and the experiment. You can
use the same instructions but changing the runtime location to the runtime/autosub-
mit.

To submit the generated run-scripts with Autosubmit you have to configure the
experiment, editing expdef_xxxx.conf, jobs_xxxx.conf and platforms_xxxx.conf in
the conf folder of the experiment (see contents in Illustration 1).

16

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Illustration 1: Configuration files content

Example 1

 # expdef_xxxx.conf

 PROJECT_TYPE = local

 PROJECT_PATH = </path/to/ECEARTH3_BASE_DIR>

 DATELIST = 19900101

 MEMBERS = fc0 fc1

 # jobs_xxxx.conf

 [LOCAL_SETUP]

 FILE = copy_runtime.sh

 PLATFORM = LOCAL

 [SIM]

 FILE = ece-esm.sh

 DEPENDENCIES = LOCAL_SETUP

 PLATFORM = marenostrum4

 WALLCLOCK = 01:00

 PROCESSORS = 256

The Autosubmit experiment creation is launched with the command:

> autosubmit create xxxx

This command creates the experiment project in the proj folder. The experiment
project contains the scripts specified in jobs_xxxx.conf and a copy of model source
code and data specified in expdef_xxxx.conf.

17

EC-EARTH 3: Building and Running Short Guide (04/06/19)

Finally, the experiment run is launched with the command:

> autosubmit run xxxx

This command processes the run-scripts you have specified in the jobs_xxxx.conf
and substitutes Autosubmit variables such as START_DATE, and MEMBER and
creates .cmd files in the LOG_xxxx folder that are automatically sent to the specified
platform and submitted when the dependencies are fulfilled.

Thereafter, the experiment can be monitored with the command:

> autosubmit monitor xxxx

18

