MODULE sbcice_cice !!====================================================================== !! *** MODULE sbcice_cice *** !! To couple with sea ice model CICE (LANL) !!===================================================================== #if defined key_cice !!---------------------------------------------------------------------- !! 'key_cice' : CICE sea-ice model !!---------------------------------------------------------------------- !! sbc_ice_cice : sea-ice model time-stepping and update ocean sbc over ice-covered area !! !! !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE domvvl USE phycst, only : rcp, rau0, r1_rau0, rhosn, rhoic USE in_out_manager ! I/O manager USE iom, ONLY : iom_put,iom_use ! I/O manager library !!Joakim edit USE lib_mpp ! distributed memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE wrk_nemo ! work arrays USE timing ! Timing USE daymod ! calendar USE fldread ! read input fields USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE sbcblk_core ! Surface boundary condition: CORE bulk USE sbccpl USE ice_kinds_mod USE ice_blocks USE ice_domain USE ice_domain_size USE ice_boundary USE ice_constants USE ice_gather_scatter USE ice_calendar, only: dt USE ice_state, only: aice,aicen,uvel,vvel,vsno,vsnon,vice,vicen # if defined key_cice4 USE ice_flux, only: strax,stray,strocnx,strocny,frain,fsnow, & strocnxT,strocnyT, & sst,sss,uocn,vocn,ss_tltx,ss_tlty,fsalt_gbm, & fresh_gbm,fhocn_gbm,fswthru_gbm,frzmlt, & flatn_f,fsurfn_f,fcondtopn_f, & uatm,vatm,wind,fsw,flw,Tair,potT,Qa,rhoa,zlvl, & swvdr,swvdf,swidr,swidf USE ice_therm_vertical, only: calc_Tsfc #else USE ice_flux, only: strax,stray,strocnx,strocny,frain,fsnow, & strocnxT,strocnyT, & sst,sss,uocn,vocn,ss_tltx,ss_tlty,fsalt_ai, & fresh_ai,fhocn_ai,fswthru_ai,frzmlt, & flatn_f,fsurfn_f,fcondtopn_f, & uatm,vatm,wind,fsw,flw,Tair,potT,Qa,rhoa,zlvl, & swvdr,swvdf,swidr,swidf USE ice_therm_shared, only: calc_Tsfc #endif USE ice_forcing, only: frcvdr,frcvdf,frcidr,frcidf USE ice_atmo, only: calc_strair USE CICE_InitMod USE CICE_RunMod USE CICE_FinalMod IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC cice_sbc_init ! routine called by sbc_init PUBLIC cice_sbc_final ! routine called by sbc_final PUBLIC sbc_ice_cice ! routine called by sbc INTEGER :: ji_off INTEGER :: jj_off INTEGER , PARAMETER :: jpfld = 13 ! maximum number of files to read INTEGER , PARAMETER :: jp_snow = 1 ! index of snow file INTEGER , PARAMETER :: jp_rain = 2 ! index of rain file INTEGER , PARAMETER :: jp_sblm = 3 ! index of sublimation file INTEGER , PARAMETER :: jp_top1 = 4 ! index of category 1 topmelt file INTEGER , PARAMETER :: jp_top2 = 5 ! index of category 2 topmelt file INTEGER , PARAMETER :: jp_top3 = 6 ! index of category 3 topmelt file INTEGER , PARAMETER :: jp_top4 = 7 ! index of category 4 topmelt file INTEGER , PARAMETER :: jp_top5 = 8 ! index of category 5 topmelt file INTEGER , PARAMETER :: jp_bot1 = 9 ! index of category 1 botmelt file INTEGER , PARAMETER :: jp_bot2 = 10 ! index of category 2 botmelt file INTEGER , PARAMETER :: jp_bot3 = 11 ! index of category 3 botmelt file INTEGER , PARAMETER :: jp_bot4 = 12 ! index of category 4 botmelt file INTEGER , PARAMETER :: jp_bot5 = 13 ! index of category 5 botmelt file TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf ! structure of input fields (file informations, fields read) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:), PRIVATE :: png ! local array used in sbc_cice_ice !! * Substitutions # include "domzgr_substitute.h90" !! $Id: sbcice_cice.F90 2544 2015-08-24 09:00:45Z ufla $ CONTAINS INTEGER FUNCTION sbc_ice_cice_alloc() !!---------------------------------------------------------------------- !! *** FUNCTION sbc_ice_cice_alloc *** !!---------------------------------------------------------------------- ALLOCATE( png(jpi,jpj,jpnij), STAT=sbc_ice_cice_alloc ) IF( lk_mpp ) CALL mpp_sum ( sbc_ice_cice_alloc ) IF( sbc_ice_cice_alloc > 0 ) CALL ctl_warn('sbc_ice_cice_alloc: allocation of arrays failed.') END FUNCTION sbc_ice_cice_alloc SUBROUTINE sbc_ice_cice( kt, ksbc ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_ice_cice *** !! !! ** Purpose : update the ocean surface boundary condition via the !! CICE Sea Ice Model time stepping !! !! ** Method : - Get any extra forcing fields for CICE !! - Prepare forcing fields !! - CICE model time stepping !! - call the routine that computes mass and !! heat fluxes at the ice/ocean interface !! !! ** Action : - time evolution of the CICE sea-ice model !! - update all sbc variables below sea-ice: !! utau, vtau, qns , qsr, emp , sfx !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step INTEGER, INTENT(in) :: ksbc ! surface forcing type !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('sbc_ice_cice') ! ! !----------------------! IF( MOD( kt-1, nn_fsbc ) == 0 ) THEN ! Ice time-step only ! ! !----------------------! ! Make sure any fluxes required for CICE are set IF ( ksbc == jp_flx ) THEN CALL cice_sbc_force(kt) ELSE IF ( ksbc == jp_purecpl ) THEN CALL sbc_cpl_ice_flx( 1.0-fr_i ) ENDIF CALL cice_sbc_in ( kt, ksbc ) CALL CICE_Run CALL cice_sbc_out ( kt, ksbc ) IF ( ksbc == jp_purecpl ) CALL cice_sbc_hadgam(kt+1) ENDIF ! End sea-ice time step only ! IF( nn_timing == 1 ) CALL timing_stop('sbc_ice_cice') END SUBROUTINE sbc_ice_cice SUBROUTINE cice_sbc_init (ksbc) !!--------------------------------------------------------------------- !! *** ROUTINE cice_sbc_init *** !! ** Purpose: Initialise ice related fields for NEMO and coupling !! INTEGER, INTENT( in ) :: ksbc ! surface forcing type REAL(wp), DIMENSION(:,:), POINTER :: ztmp1, ztmp2 REAL(wp) :: zcoefu, zcoefv, zcoeff ! local scalar INTEGER :: ji, jj, jl, jk ! dummy loop indices !!--------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('cice_sbc_init') ! CALL wrk_alloc( jpi,jpj, ztmp1, ztmp2 ) ! IF(lwp) WRITE(numout,*)'cice_sbc_init' ji_off = INT ( (jpiglo - nx_global) / 2 ) jj_off = INT ( (jpjglo - ny_global) / 2 ) #if defined key_nemocice_decomp ! Pass initial SST from NEMO to CICE so ice is initialised correctly if ! there is no restart file. ! Values from a CICE restart file would overwrite this IF ( .NOT. ln_rstart ) THEN CALL nemo2cice( tsn(:,:,1,jp_tem) , sst , 'T' , 1.) ENDIF #endif ! Initialize CICE CALL CICE_Initialize ! Do some CICE consistency checks IF ( (ksbc == jp_flx) .OR. (ksbc == jp_purecpl) ) THEN IF ( calc_strair .OR. calc_Tsfc ) THEN CALL ctl_stop( 'STOP', 'cice_sbc_init : Forcing option requires calc_strair=F and calc_Tsfc=F in ice_in' ) ENDIF ELSEIF (ksbc == jp_core) THEN IF ( .NOT. (calc_strair .AND. calc_Tsfc) ) THEN CALL ctl_stop( 'STOP', 'cice_sbc_init : Forcing option requires calc_strair=T and calc_Tsfc=T in ice_in' ) ENDIF ENDIF ! allocate sbc_ice and sbc_cice arrays IF( sbc_ice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_ice_cice_alloc : unable to allocate arrays' ) IF( sbc_ice_cice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_ice_cice_alloc : unable to allocate cice arrays' ) ! Ensure ocean temperatures are nowhere below freezing if not a NEMO restart IF( .NOT. ln_rstart ) THEN tsn(:,:,:,jp_tem) = MAX (tsn(:,:,:,jp_tem),Tocnfrz) tsb(:,:,:,jp_tem) = tsn(:,:,:,jp_tem) ENDIF fr_iu(:,:)=0.0 fr_iv(:,:)=0.0 CALL cice2nemo(aice,fr_i, 'T', 1. ) IF ( (ksbc == jp_flx) .OR. (ksbc == jp_purecpl) ) THEN DO jl=1,ncat CALL cice2nemo(aicen(:,:,jl,:),a_i(:,:,jl), 'T', 1. ) ENDDO ENDIF ! T point to U point ! T point to V point DO jj=1,jpjm1 DO ji=1,jpim1 fr_iu(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji+1,jj))*umask(ji,jj,1) fr_iv(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji,jj+1))*vmask(ji,jj,1) ENDDO ENDDO CALL lbc_lnk ( fr_iu , 'U', 1. ) CALL lbc_lnk ( fr_iv , 'V', 1. ) ! ! embedded sea ice IF( nn_ice_embd /= 0 ) THEN ! mass exchanges between ice and ocean (case 1 or 2) set the snow+ice mass CALL cice2nemo(vsno(:,:,:),ztmp1,'T', 1. ) CALL cice2nemo(vice(:,:,:),ztmp2,'T', 1. ) snwice_mass (:,:) = ( rhosn * ztmp1(:,:) + rhoic * ztmp2(:,:) ) snwice_mass_b(:,:) = snwice_mass(:,:) ELSE snwice_mass (:,:) = 0.0_wp ! no mass exchanges snwice_mass_b(:,:) = 0.0_wp ! no mass exchanges ENDIF IF( .NOT. ln_rstart ) THEN IF( nn_ice_embd == 2 ) THEN ! full embedment (case 2) deplete the initial ssh below sea-ice area sshn(:,:) = sshn(:,:) - snwice_mass(:,:) * r1_rau0 sshb(:,:) = sshb(:,:) - snwice_mass(:,:) * r1_rau0 #if defined key_vvl ! key_vvl necessary? clem: yes for compilation purpose DO jk = 1,jpkm1 ! adjust initial vertical scale factors fse3t_n(:,:,jk) = e3t_0(:,:,jk)*( 1._wp + sshn(:,:)*tmask(:,:,1)/(ht_0(:,:) + 1.0 - tmask(:,:,1)) ) fse3t_b(:,:,jk) = e3t_0(:,:,jk)*( 1._wp + sshb(:,:)*tmask(:,:,1)/(ht_0(:,:) + 1.0 - tmask(:,:,1)) ) ENDDO fse3t_a(:,:,:) = fse3t_b(:,:,:) ! Reconstruction of all vertical scale factors at now and before time ! steps ! ============================================================================= ! Horizontal scale factor interpolations ! -------------------------------------- CALL dom_vvl_interpol( fse3t_b(:,:,:), fse3u_b(:,:,:), 'U' ) CALL dom_vvl_interpol( fse3t_b(:,:,:), fse3v_b(:,:,:), 'V' ) CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3u_n(:,:,:), 'U' ) CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3v_n(:,:,:), 'V' ) CALL dom_vvl_interpol( fse3u_n(:,:,:), fse3f_n(:,:,:), 'F' ) ! Vertical scale factor interpolations ! ------------------------------------ CALL dom_vvl_interpol( fse3t_n(:,:,:), fse3w_n (:,:,:), 'W' ) CALL dom_vvl_interpol( fse3u_n(:,:,:), fse3uw_n(:,:,:), 'UW' ) CALL dom_vvl_interpol( fse3v_n(:,:,:), fse3vw_n(:,:,:), 'VW' ) CALL dom_vvl_interpol( fse3u_b(:,:,:), fse3uw_b(:,:,:), 'UW' ) CALL dom_vvl_interpol( fse3v_b(:,:,:), fse3vw_b(:,:,:), 'VW' ) ! t- and w- points depth ! ---------------------- fsdept_n(:,:,1) = 0.5_wp * fse3w_n(:,:,1) fsdepw_n(:,:,1) = 0.0_wp fsde3w_n(:,:,1) = fsdept_n(:,:,1) - sshn(:,:) DO jk = 2, jpk fsdept_n(:,:,jk) = fsdept_n(:,:,jk-1) + fse3w_n(:,:,jk) fsdepw_n(:,:,jk) = fsdepw_n(:,:,jk-1) + fse3t_n(:,:,jk-1) fsde3w_n(:,:,jk) = fsdept_n(:,:,jk ) - sshn (:,:) END DO #endif ENDIF ENDIF CALL wrk_dealloc( jpi,jpj, ztmp1, ztmp2 ) ! IF( nn_timing == 1 ) CALL timing_stop('cice_sbc_init') ! END SUBROUTINE cice_sbc_init SUBROUTINE cice_sbc_in (kt, ksbc) !!--------------------------------------------------------------------- !! *** ROUTINE cice_sbc_in *** !! ** Purpose: Set coupling fields and pass to CICE !!--------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt ! ocean time step INTEGER, INTENT(in ) :: ksbc ! surface forcing type INTEGER :: ji, jj, jl ! dummy loop indices REAL(wp), DIMENSION(:,:), POINTER :: ztmp, zpice REAL(wp), DIMENSION(:,:,:), POINTER :: ztmpn REAL(wp) :: zintb, zintn ! dummy argument !!--------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('cice_sbc_in') ! CALL wrk_alloc( jpi,jpj, ztmp, zpice ) CALL wrk_alloc( jpi,jpj,ncat, ztmpn ) IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*)'cice_sbc_in' ENDIF ztmp(:,:)=0.0 ! Aggregate ice concentration already set in cice_sbc_out (or cice_sbc_init on ! the first time-step) ! forced and coupled case IF ( (ksbc == jp_flx).OR.(ksbc == jp_purecpl) ) THEN ztmpn(:,:,:)=0.0 ! x comp of wind stress (CI_1) ! U point to F point DO jj=1,jpjm1 DO ji=1,jpi ztmp(ji,jj) = 0.5 * ( fr_iu(ji,jj) * utau(ji,jj) & + fr_iu(ji,jj+1) * utau(ji,jj+1) ) * fmask(ji,jj,1) ENDDO ENDDO CALL nemo2cice(ztmp,strax,'F', -1. ) ! y comp of wind stress (CI_2) ! V point to F point DO jj=1,jpj DO ji=1,jpim1 ztmp(ji,jj) = 0.5 * ( fr_iv(ji,jj) * vtau(ji,jj) & + fr_iv(ji+1,jj) * vtau(ji+1,jj) ) * fmask(ji,jj,1) ENDDO ENDDO CALL nemo2cice(ztmp,stray,'F', -1. ) ! Surface downward latent heat flux (CI_5) IF (ksbc == jp_flx) THEN DO jl=1,ncat ztmpn(:,:,jl)=qla_ice(:,:,1)*a_i(:,:,jl) ENDDO ELSE ! emp_ice is set in sbc_cpl_ice_flx as sublimation-snow qla_ice(:,:,1)= - ( emp_ice(:,:)+sprecip(:,:) ) * Lsub ! End of temporary code DO jj=1,jpj DO ji=1,jpi IF (fr_i(ji,jj).eq.0.0) THEN DO jl=1,ncat ztmpn(ji,jj,jl)=0.0 ENDDO ! This will then be conserved in CICE ztmpn(ji,jj,1)=qla_ice(ji,jj,1) ELSE DO jl=1,ncat ztmpn(ji,jj,jl)=qla_ice(ji,jj,1)*a_i(ji,jj,jl)/fr_i(ji,jj) ENDDO ENDIF ENDDO ENDDO ENDIF DO jl=1,ncat CALL nemo2cice(ztmpn(:,:,jl),flatn_f(:,:,jl,:),'T', 1. ) ! GBM conductive flux through ice (CI_6) ! Convert to GBM IF (ksbc == jp_flx) THEN ztmp(:,:) = botmelt(:,:,jl)*a_i(:,:,jl) ELSE ztmp(:,:) = botmelt(:,:,jl) ENDIF CALL nemo2cice(ztmp,fcondtopn_f(:,:,jl,:),'T', 1. ) ! GBM surface heat flux (CI_7) ! Convert to GBM IF (ksbc == jp_flx) THEN ztmp(:,:) = (topmelt(:,:,jl)+botmelt(:,:,jl))*a_i(:,:,jl) ELSE ztmp(:,:) = (topmelt(:,:,jl)+botmelt(:,:,jl)) ENDIF CALL nemo2cice(ztmp,fsurfn_f(:,:,jl,:),'T', 1. ) ENDDO ELSE IF (ksbc == jp_core) THEN ! Pass CORE forcing fields to CICE (which will calculate heat fluxes etc itself) ! x comp and y comp of atmosphere surface wind (CICE expects on T points) ztmp(:,:) = wndi_ice(:,:) CALL nemo2cice(ztmp,uatm,'T', -1. ) ztmp(:,:) = wndj_ice(:,:) CALL nemo2cice(ztmp,vatm,'T', -1. ) ztmp(:,:) = SQRT ( wndi_ice(:,:)**2 + wndj_ice(:,:)**2 ) CALL nemo2cice(ztmp,wind,'T', 1. ) ! Wind speed (m/s) ztmp(:,:) = qsr_ice(:,:,1) CALL nemo2cice(ztmp,fsw,'T', 1. ) ! Incoming short-wave (W/m^2) ztmp(:,:) = qlw_ice(:,:,1) CALL nemo2cice(ztmp,flw,'T', 1. ) ! Incoming long-wave (W/m^2) ztmp(:,:) = tatm_ice(:,:) CALL nemo2cice(ztmp,Tair,'T', 1. ) ! Air temperature (K) CALL nemo2cice(ztmp,potT,'T', 1. ) ! Potential temp (K) ! Following line uses MAX(....) to avoid problems if tatm_ice has unset halo rows ztmp(:,:) = 101000. / ( 287.04 * MAX(1.0,tatm_ice(:,:)) ) ! Constant (101000.) atm pressure assumed CALL nemo2cice(ztmp,rhoa,'T', 1. ) ! Air density (kg/m^3) ztmp(:,:) = qatm_ice(:,:) CALL nemo2cice(ztmp,Qa,'T', 1. ) ! Specific humidity (kg/kg) ztmp(:,:)=10.0 CALL nemo2cice(ztmp,zlvl,'T', 1. ) ! Atmos level height (m) ! May want to check all values are physically realistic (as in CICE routine ! prepare_forcing)? ! Divide shortwave into spectral bands (as in prepare_forcing) ztmp(:,:)=qsr_ice(:,:,1)*frcvdr ! visible direct CALL nemo2cice(ztmp,swvdr,'T', 1. ) ztmp(:,:)=qsr_ice(:,:,1)*frcvdf ! visible diffuse CALL nemo2cice(ztmp,swvdf,'T', 1. ) ztmp(:,:)=qsr_ice(:,:,1)*frcidr ! near IR direct CALL nemo2cice(ztmp,swidr,'T', 1. ) ztmp(:,:)=qsr_ice(:,:,1)*frcidf ! near IR diffuse CALL nemo2cice(ztmp,swidf,'T', 1. ) ENDIF ! Snowfall ! Ensure fsnow is positive (as in CICE routine prepare_forcing) IF( iom_use('snowpre') ) CALL iom_put('snowpre',MAX( (1.0-fr_i(:,:))*sprecip(:,:) ,0.0)) !!Joakim edit ztmp(:,:)=MAX(fr_i(:,:)*sprecip(:,:),0.0) CALL nemo2cice(ztmp,fsnow,'T', 1. ) ! Rainfall IF( iom_use('precip') ) CALL iom_put('precip', (1.0-fr_i(:,:))*(tprecip(:,:)-sprecip(:,:)) ) !!Joakim edit ztmp(:,:)=fr_i(:,:)*(tprecip(:,:)-sprecip(:,:)) CALL nemo2cice(ztmp,frain,'T', 1. ) ! Freezing/melting potential ! Calculated over NEMO leapfrog timestep (hence 2*dt) nfrzmlt(:,:)=rau0*rcp*fse3t_m(:,:)*(Tocnfrz-sst_m(:,:))/(2.0*dt) ztmp(:,:) = nfrzmlt(:,:) CALL nemo2cice(ztmp,frzmlt,'T', 1. ) ! SST and SSS CALL nemo2cice(sst_m,sst,'T', 1. ) CALL nemo2cice(sss_m,sss,'T', 1. ) ! x comp and y comp of surface ocean current ! U point to F point DO jj=1,jpjm1 DO ji=1,jpi ztmp(ji,jj)=0.5*(ssu_m(ji,jj)+ssu_m(ji,jj+1))*fmask(ji,jj,1) ENDDO ENDDO CALL nemo2cice(ztmp,uocn,'F', -1. ) ! V point to F point DO jj=1,jpj DO ji=1,jpim1 ztmp(ji,jj)=0.5*(ssv_m(ji,jj)+ssv_m(ji+1,jj))*fmask(ji,jj,1) ENDDO ENDDO CALL nemo2cice(ztmp,vocn,'F', -1. ) IF( nn_ice_embd == 2 ) THEN !== embedded sea ice: compute representative ice top surface ==! ! ! average interpolation coeff as used in dynspg = (1/nn_fsbc) * {SUM[n/nn_fsbc], n=0,nn_fsbc-1} ! = (1/nn_fsbc)^2 * {SUM[n], n=0,nn_fsbc-1} zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc ) * 0.5_wp ! ! average interpolation coeff as used in dynspg = (1/nn_fsbc) * {SUM[1-n/nn_fsbc], n=0,nn_fsbc-1} ! = (1/nn_fsbc)^2 * (nn_fsbc^2 - {SUM[n], n=0,nn_fsbc-1}) zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc ) * 0.5_wp ! zpice(:,:) = ssh_m(:,:) + ( zintn * snwice_mass(:,:) + zintb * snwice_mass_b(:,:) ) * r1_rau0 ! ! ELSE !== non-embedded sea ice: use ocean surface for slope calculation ==! zpice(:,:) = ssh_m(:,:) ENDIF ! x comp and y comp of sea surface slope (on F points) ! T point to F point DO jj=1,jpjm1 DO ji=1,jpim1 ztmp(ji,jj)=0.5 * ( (zpice(ji+1,jj )-zpice(ji,jj ))/e1u(ji,jj ) & + (zpice(ji+1,jj+1)-zpice(ji,jj+1))/e1u(ji,jj+1) ) & * fmask(ji,jj,1) ENDDO ENDDO CALL nemo2cice(ztmp,ss_tltx,'F', -1. ) ! T point to F point DO jj=1,jpjm1 DO ji=1,jpim1 ztmp(ji,jj)=0.5 * ( (zpice(ji ,jj+1)-zpice(ji ,jj))/e2v(ji ,jj) & + (zpice(ji+1,jj+1)-zpice(ji+1,jj))/e2v(ji+1,jj) ) & * fmask(ji,jj,1) ENDDO ENDDO CALL nemo2cice(ztmp,ss_tlty,'F', -1. ) CALL wrk_dealloc( jpi,jpj, ztmp, zpice ) CALL wrk_dealloc( jpi,jpj,ncat, ztmpn ) ! IF( nn_timing == 1 ) CALL timing_stop('cice_sbc_in') ! END SUBROUTINE cice_sbc_in SUBROUTINE cice_sbc_out (kt,ksbc) !!--------------------------------------------------------------------- !! *** ROUTINE cice_sbc_out *** !! ** Purpose: Get fields from CICE and set surface fields for NEMO !!--------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! ocean time step INTEGER, INTENT( in ) :: ksbc ! surface forcing type INTEGER :: ji, jj, jl ! dummy loop indices REAL(wp), DIMENSION(:,:), POINTER :: ztmp1, ztmp2 !!--------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('cice_sbc_out') ! CALL wrk_alloc( jpi,jpj, ztmp1, ztmp2 ) IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*)'cice_sbc_out' ENDIF ! x comp of ocean-ice stress CALL cice2nemo(strocnx,ztmp1,'F', -1. ) ss_iou(:,:)=0.0 ! F point to U point DO jj=2,jpjm1 DO ji=2,jpim1 ss_iou(ji,jj) = 0.5 * ( ztmp1(ji,jj-1) + ztmp1(ji,jj) ) * umask(ji,jj,1) ENDDO ENDDO CALL lbc_lnk( ss_iou , 'U', -1. ) ! y comp of ocean-ice stress CALL cice2nemo(strocny,ztmp1,'F', -1. ) ss_iov(:,:)=0.0 ! F point to V point DO jj=1,jpjm1 DO ji=2,jpim1 ss_iov(ji,jj) = 0.5 * ( ztmp1(ji-1,jj) + ztmp1(ji,jj) ) * vmask(ji,jj,1) ENDDO ENDDO CALL lbc_lnk( ss_iov , 'V', -1. ) ! x and y comps of surface stress ! Combine wind stress and ocean-ice stress ! [Note that fr_iu hasn't yet been updated, so still from start of CICE timestep] ! strocnx and strocny already weighted by ice fraction in CICE so not done here utau(:,:)=(1.0-fr_iu(:,:))*utau(:,:)-ss_iou(:,:) vtau(:,:)=(1.0-fr_iv(:,:))*vtau(:,:)-ss_iov(:,:) ! Also need ice/ocean stress on T points so that taum can be updated ! This interpolation is already done in CICE so best to use those values CALL cice2nemo(strocnxT,ztmp1,'T',-1.) CALL cice2nemo(strocnyT,ztmp2,'T',-1.) ! Update taum with modulus of ice-ocean stress ! strocnxT and strocnyT are not weighted by ice fraction in CICE so must be done here taum(:,:)=(1.0-fr_i(:,:))*taum(:,:)+fr_i(:,:)*SQRT(ztmp1**2. + ztmp2**2.) ! Freshwater fluxes IF (ksbc == jp_flx) THEN ! Note that emp from the forcing files is evap*(1-aice)-(tprecip-aice*sprecip) ! What we want here is evap*(1-aice)-tprecip*(1-aice) hence manipulation below ! Not ideal since aice won't be the same as in the atmosphere. ! Better to use evap and tprecip? (but for now don't read in evap in this case) emp(:,:) = emp(:,:)+fr_i(:,:)*(tprecip(:,:)-sprecip(:,:)) ELSE IF (ksbc == jp_core) THEN emp(:,:) = (1.0-fr_i(:,:))*emp(:,:) ELSE IF (ksbc == jp_purecpl) THEN ! emp_tot is set in sbc_cpl_ice_flx (called from cice_sbc_in above) ! This is currently as required with the coupling fields from the UM atmosphere emp(:,:) = emp_tot(:,:)+tprecip(:,:)*fr_i(:,:) ENDIF #if defined key_cice4 CALL cice2nemo(fresh_gbm,ztmp1,'T', 1. ) CALL cice2nemo(fsalt_gbm,ztmp2,'T', 1. ) #else CALL cice2nemo(fresh_ai,ztmp1,'T', 1. ) CALL cice2nemo(fsalt_ai,ztmp2,'T', 1. ) #endif ! Check to avoid unphysical expression when ice is forming (ztmp1 negative) ! Otherwise we are effectively allowing ice of higher salinity than the ocean to form ! which has to be compensated for by the ocean salinity potentially going negative ! This check breaks conservation but seems reasonable until we have prognostic ice salinity ! Note the 1000.0 below is to convert from kg salt to g salt (needed for PSU) WHERE (ztmp1(:,:).lt.0.0) ztmp2(:,:)=MAX(ztmp2(:,:),ztmp1(:,:)*sss_m(:,:)/1000.0) sfx(:,:)=ztmp2(:,:)*1000.0 emp(:,:)=emp(:,:)-ztmp1(:,:) fmmflx(:,:) = ztmp1(:,:) !!Joakim edit CALL lbc_lnk( emp , 'T', 1. ) CALL lbc_lnk( sfx , 'T', 1. ) ! Solar penetrative radiation and non solar surface heat flux ! Scale qsr and qns according to ice fraction (bulk formulae only) IF (ksbc == jp_core) THEN qsr(:,:)=qsr(:,:)*(1.0-fr_i(:,:)) qns(:,:)=qns(:,:)*(1.0-fr_i(:,:)) ENDIF ! Take into account snow melting except for fully coupled when already in qns_tot IF (ksbc == jp_purecpl) THEN qsr(:,:)= qsr_tot(:,:) qns(:,:)= qns_tot(:,:) ELSE qns(:,:)= qns(:,:)-sprecip(:,:)*Lfresh*(1.0-fr_i(:,:)) ENDIF ! Now add in ice / snow related terms ! [fswthru will be zero unless running with calc_Tsfc=T in CICE] #if defined key_cice4 CALL cice2nemo(fswthru_gbm,ztmp1,'T', 1. ) #else CALL cice2nemo(fswthru_ai,ztmp1,'T', 1. ) #endif qsr(:,:)=qsr(:,:)+ztmp1(:,:) CALL lbc_lnk( qsr , 'T', 1. ) DO jj=1,jpj DO ji=1,jpi nfrzmlt(ji,jj)=MAX(nfrzmlt(ji,jj),0.0) ENDDO ENDDO #if defined key_cice4 CALL cice2nemo(fhocn_gbm,ztmp1,'T', 1. ) #else CALL cice2nemo(fhocn_ai,ztmp1,'T', 1. ) #endif qns(:,:)=qns(:,:)+nfrzmlt(:,:)+ztmp1(:,:) CALL lbc_lnk( qns , 'T', 1. ) ! Prepare for the following CICE time-step CALL cice2nemo(aice,fr_i,'T', 1. ) IF ( (ksbc == jp_flx).OR.(ksbc == jp_purecpl) ) THEN DO jl=1,ncat CALL cice2nemo(aicen(:,:,jl,:),a_i(:,:,jl), 'T', 1. ) ENDDO ENDIF ! T point to U point ! T point to V point DO jj=1,jpjm1 DO ji=1,jpim1 fr_iu(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji+1,jj))*umask(ji,jj,1) fr_iv(ji,jj)=0.5*(fr_i(ji,jj)+fr_i(ji,jj+1))*vmask(ji,jj,1) ENDDO ENDDO CALL lbc_lnk ( fr_iu , 'U', 1. ) CALL lbc_lnk ( fr_iv , 'V', 1. ) ! ! embedded sea ice IF( nn_ice_embd /= 0 ) THEN ! mass exchanges between ice and ocean (case 1 or 2) set the snow+ice mass CALL cice2nemo(vsno(:,:,:),ztmp1,'T', 1. ) CALL cice2nemo(vice(:,:,:),ztmp2,'T', 1. ) snwice_mass (:,:) = ( rhosn * ztmp1(:,:) + rhoic * ztmp2(:,:) ) snwice_mass_b(:,:) = snwice_mass(:,:) snwice_fmass (:,:) = ( snwice_mass(:,:) - snwice_mass_b(:,:) ) / dt ENDIF ! Release work space CALL wrk_dealloc( jpi,jpj, ztmp1, ztmp2 ) ! IF( nn_timing == 1 ) CALL timing_stop('cice_sbc_out') ! END SUBROUTINE cice_sbc_out SUBROUTINE cice_sbc_hadgam( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE cice_sbc_hadgam *** !! ** Purpose: Prepare fields needed to pass to HadGAM3 atmosphere !! !! INTEGER, INTENT( in ) :: kt ! ocean time step !!--------------------------------------------------------------------- INTEGER :: jl ! dummy loop index INTEGER :: ierror IF( nn_timing == 1 ) CALL timing_start('cice_sbc_hadgam') ! IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*)'cice_sbc_hadgam' IF( sbc_cpl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_cpl_alloc : unable to allocate arrays' ) ENDIF ! ! =========================== ! ! ! Prepare Coupling fields ! ! ! =========================== ! ! x and y comp of ice velocity CALL cice2nemo(uvel,u_ice,'F', -1. ) CALL cice2nemo(vvel,v_ice,'F', -1. ) ! Ice concentration (CO_1) = a_i calculated at end of cice_sbc_out ! Snow and ice thicknesses (CO_2 and CO_3) DO jl = 1,ncat CALL cice2nemo(vsnon(:,:,jl,:),ht_s(:,:,jl),'T', 1. ) CALL cice2nemo(vicen(:,:,jl,:),ht_i(:,:,jl),'T', 1. ) ENDDO ! IF( nn_timing == 1 ) CALL timing_stop('cice_sbc_hadgam') ! END SUBROUTINE cice_sbc_hadgam SUBROUTINE cice_sbc_final !!--------------------------------------------------------------------- !! *** ROUTINE cice_sbc_final *** !! ** Purpose: Finalize CICE !!--------------------------------------------------------------------- IF(lwp) WRITE(numout,*)'cice_sbc_final' CALL CICE_Finalize END SUBROUTINE cice_sbc_final SUBROUTINE cice_sbc_force (kt) !!--------------------------------------------------------------------- !! *** ROUTINE cice_sbc_force *** !! ** Purpose : Provide CICE forcing from files !! !!--------------------------------------------------------------------- !! ** Method : READ monthly flux file in NetCDF files !! !! snowfall !! rainfall !! sublimation rate !! topmelt (category) !! botmelt (category) !! !! History : !!---------------------------------------------------------------------- !! * Modules used USE iom !! * arguments INTEGER, INTENT( in ) :: kt ! ocean time step INTEGER :: ierror ! return error code INTEGER :: ifpr ! dummy loop index !! CHARACTER(len=100) :: cn_dir ! Root directory for location of CICE forcing files TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_snow, sn_rain, sn_sblm ! informations about the fields to be read TYPE(FLD_N) :: sn_top1, sn_top2, sn_top3, sn_top4, sn_top5 TYPE(FLD_N) :: sn_bot1, sn_bot2, sn_bot3, sn_bot4, sn_bot5 !! NAMELIST/namsbc_cice/ cn_dir, sn_snow, sn_rain, sn_sblm, & & sn_top1, sn_top2, sn_top3, sn_top4, sn_top5, & & sn_bot1, sn_bot2, sn_bot3, sn_bot4, sn_bot5 INTEGER :: ios !!--------------------------------------------------------------------- ! ! ====================== ! IF( kt == nit000 ) THEN ! First call kt=nit000 ! ! ! ====================== ! ! namsbc_cice is not yet in the reference namelist ! set file information (default values) cn_dir = './' ! directory in which the model is executed ! (NB: frequency positive => hours, negative => months) ! ! file ! frequency ! variable ! time intep ! clim ! 'yearly' or ! weights ! rotation ! landmask ! ! name ! (hours) ! name ! (T/F) ! (T/F) ! 'monthly' ! filename ! pairs ! file sn_snow = FLD_N( 'snowfall_1m' , -1. , 'snowfall' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_rain = FLD_N( 'rainfall_1m' , -1. , 'rainfall' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_sblm = FLD_N( 'sublim_1m' , -1. , 'sublim' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_top1 = FLD_N( 'topmeltn1_1m' , -1. , 'topmeltn1' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_top2 = FLD_N( 'topmeltn2_1m' , -1. , 'topmeltn2' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_top3 = FLD_N( 'topmeltn3_1m' , -1. , 'topmeltn3' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_top4 = FLD_N( 'topmeltn4_1m' , -1. , 'topmeltn4' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_top5 = FLD_N( 'topmeltn5_1m' , -1. , 'topmeltn5' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_bot1 = FLD_N( 'botmeltn1_1m' , -1. , 'botmeltn1' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_bot2 = FLD_N( 'botmeltn2_1m' , -1. , 'botmeltn2' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_bot3 = FLD_N( 'botmeltn3_1m' , -1. , 'botmeltn3' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_bot4 = FLD_N( 'botmeltn4_1m' , -1. , 'botmeltn4' , .true. , .true. , ' yearly' , '' , '' , '' ) sn_bot5 = FLD_N( 'botmeltn5_1m' , -1. , 'botmeltn5' , .true. , .true. , ' yearly' , '' , '' , '' ) REWIND( numnam_ref ) ! Namelist namsbc_cice in reference namelist : READ ( numnam_ref, namsbc_cice, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cice in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namsbc_cice in configuration namelist : Parameters of the run READ ( numnam_cfg, namsbc_cice, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_cice in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namsbc_cice ) ! store namelist information in an array slf_i(jp_snow) = sn_snow ; slf_i(jp_rain) = sn_rain ; slf_i(jp_sblm) = sn_sblm slf_i(jp_top1) = sn_top1 ; slf_i(jp_top2) = sn_top2 ; slf_i(jp_top3) = sn_top3 slf_i(jp_top4) = sn_top4 ; slf_i(jp_top5) = sn_top5 ; slf_i(jp_bot1) = sn_bot1 slf_i(jp_bot2) = sn_bot2 ; slf_i(jp_bot3) = sn_bot3 ; slf_i(jp_bot4) = sn_bot4 slf_i(jp_bot5) = sn_bot5 ! set sf structure ALLOCATE( sf(jpfld), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'cice_sbc_force: unable to allocate sf structure' ) ; RETURN ENDIF DO ifpr= 1, jpfld ALLOCATE( sf(ifpr)%fnow(jpi,jpj,1) ) ALLOCATE( sf(ifpr)%fdta(jpi,jpj,1,2) ) END DO ! fill sf with slf_i and control print CALL fld_fill( sf, slf_i, cn_dir, 'cice_sbc_force', 'flux formulation for CICE', 'namsbc_cice' ) ! ENDIF CALL fld_read( kt, nn_fsbc, sf ) ! Read input fields and provides the ! ! input fields at the current time-step ! set the fluxes from read fields sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) tprecip(:,:) = sf(jp_snow)%fnow(:,:,1)+sf(jp_rain)%fnow(:,:,1) ! May be better to do this conversion somewhere else qla_ice(:,:,1) = -Lsub*sf(jp_sblm)%fnow(:,:,1) topmelt(:,:,1) = sf(jp_top1)%fnow(:,:,1) topmelt(:,:,2) = sf(jp_top2)%fnow(:,:,1) topmelt(:,:,3) = sf(jp_top3)%fnow(:,:,1) topmelt(:,:,4) = sf(jp_top4)%fnow(:,:,1) topmelt(:,:,5) = sf(jp_top5)%fnow(:,:,1) botmelt(:,:,1) = sf(jp_bot1)%fnow(:,:,1) botmelt(:,:,2) = sf(jp_bot2)%fnow(:,:,1) botmelt(:,:,3) = sf(jp_bot3)%fnow(:,:,1) botmelt(:,:,4) = sf(jp_bot4)%fnow(:,:,1) botmelt(:,:,5) = sf(jp_bot5)%fnow(:,:,1) ! control print (if less than 100 time-step asked) IF( nitend-nit000 <= 100 .AND. lwp ) THEN WRITE(numout,*) WRITE(numout,*) ' read forcing fluxes for CICE OK' CALL FLUSH(numout) ENDIF END SUBROUTINE cice_sbc_force SUBROUTINE nemo2cice( pn, pc, cd_type, psgn) !!--------------------------------------------------------------------- !! *** ROUTINE nemo2cice *** !! ** Purpose : Transfer field in NEMO array to field in CICE array. #if defined key_nemocice_decomp !! !! NEMO and CICE PE sub domains are identical, hence !! there is no need to gather or scatter data from !! one PE configuration to another. #else !! Automatically gather/scatter between !! different processors and blocks !! ** Method : A. Ensure all haloes are filled in NEMO field (pn) !! B. Gather pn into global array (png) !! C. Map png into CICE global array (pcg) !! D. Scatter pcg to CICE blocks (pc) + update haloes #endif !!--------------------------------------------------------------------- CHARACTER(len=1), INTENT( in ) :: & cd_type ! nature of pn grid-point ! ! = T or F gridpoints REAL(wp), INTENT( in ) :: & psgn ! control of the sign change ! ! =-1 , the sign is modified following the type of b.c. used ! ! = 1 , no sign change REAL(wp), DIMENSION(jpi,jpj) :: pn #if !defined key_nemocice_decomp REAL(wp), DIMENSION(jpiglo,jpjglo) :: png2 REAL (kind=dbl_kind), dimension(nx_global,ny_global) :: pcg #endif REAL (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks) :: pc INTEGER (int_kind) :: & field_type, &! id for type of field (scalar, vector, angle) grid_loc ! id for location on horizontal grid ! (center, NEcorner, Nface, Eface) INTEGER :: ji, jj, jn ! dummy loop indices ! A. Ensure all haloes are filled in NEMO field (pn) CALL lbc_lnk( pn , cd_type, psgn ) #if defined key_nemocice_decomp ! Copy local domain data from NEMO to CICE field pc(:,:,1)=0.0 DO jj=2,ny_block-1 DO ji=2,nx_block-1 pc(ji,jj,1)=pn(ji-1+ji_off,jj-1+jj_off) ENDDO ENDDO #else ! B. Gather pn into global array (png) IF ( jpnij > 1) THEN CALL mppsync CALL mppgather (pn,0,png) CALL mppsync ELSE png(:,:,1)=pn(:,:) ENDIF ! C. Map png into CICE global array (pcg) ! Need to make sure this is robust to changes in NEMO halo rows.... ! (may be OK but not 100% sure) IF (nproc==0) THEN ! pcg(:,:)=0.0 DO jn=1,jpnij DO jj=nldjt(jn),nlejt(jn) DO ji=nldit(jn),nleit(jn) png2(ji+nimppt(jn)-1,jj+njmppt(jn)-1)=png(ji,jj,jn) ENDDO ENDDO ENDDO DO jj=1,ny_global DO ji=1,nx_global pcg(ji,jj)=png2(ji+ji_off,jj+jj_off) ENDDO ENDDO ENDIF #endif SELECT CASE ( cd_type ) CASE ( 'T' ) grid_loc=field_loc_center CASE ( 'F' ) grid_loc=field_loc_NEcorner END SELECT SELECT CASE ( NINT(psgn) ) CASE ( -1 ) field_type=field_type_vector CASE ( 1 ) field_type=field_type_scalar END SELECT #if defined key_nemocice_decomp ! Ensure CICE halos are up to date CALL ice_HaloUpdate (pc, halo_info, grid_loc, field_type) #else ! D. Scatter pcg to CICE blocks (pc) + update halos CALL scatter_global(pc, pcg, 0, distrb_info, grid_loc, field_type) #endif END SUBROUTINE nemo2cice SUBROUTINE cice2nemo ( pc, pn, cd_type, psgn ) !!--------------------------------------------------------------------- !! *** ROUTINE cice2nemo *** !! ** Purpose : Transfer field in CICE array to field in NEMO array. #if defined key_nemocice_decomp !! !! NEMO and CICE PE sub domains are identical, hence !! there is no need to gather or scatter data from !! one PE configuration to another. #else !! Automatically deal with scatter/gather between !! different processors and blocks !! ** Method : A. Gather CICE blocks (pc) into global array (pcg) !! B. Map pcg into NEMO global array (png) !! C. Scatter png into NEMO field (pn) for each processor !! D. Ensure all haloes are filled in pn #endif !!--------------------------------------------------------------------- CHARACTER(len=1), INTENT( in ) :: & cd_type ! nature of pn grid-point ! ! = T or F gridpoints REAL(wp), INTENT( in ) :: & psgn ! control of the sign change ! ! =-1 , the sign is modified following the type of b.c. used ! ! = 1 , no sign change REAL(wp), DIMENSION(jpi,jpj) :: pn #if defined key_nemocice_decomp INTEGER (int_kind) :: & field_type, & ! id for type of field (scalar, vector, angle) grid_loc ! id for location on horizontal grid ! (center, NEcorner, Nface, Eface) #else REAL (kind=dbl_kind), dimension(nx_global,ny_global) :: pcg #endif REAL (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks) :: pc INTEGER :: ji, jj, jn ! dummy loop indices #if defined key_nemocice_decomp SELECT CASE ( cd_type ) CASE ( 'T' ) grid_loc=field_loc_center CASE ( 'F' ) grid_loc=field_loc_NEcorner END SELECT SELECT CASE ( NINT(psgn) ) CASE ( -1 ) field_type=field_type_vector CASE ( 1 ) field_type=field_type_scalar END SELECT CALL ice_HaloUpdate (pc, halo_info, grid_loc, field_type) pn(:,:)=0.0 DO jj=1,jpjm1 DO ji=1,jpim1 pn(ji,jj)=pc(ji+1-ji_off,jj+1-jj_off,1) ENDDO ENDDO #else ! A. Gather CICE blocks (pc) into global array (pcg) CALL gather_global(pcg, pc, 0, distrb_info) ! B. Map pcg into NEMO global array (png) ! Need to make sure this is robust to changes in NEMO halo rows.... ! (may be OK but not spent much time thinking about it) ! Note that non-existent pcg elements may be used below, but ! the lbclnk call on pn will replace these with sensible values IF (nproc==0) THEN png(:,:,:)=0.0 DO jn=1,jpnij DO jj=nldjt(jn),nlejt(jn) DO ji=nldit(jn),nleit(jn) png(ji,jj,jn)=pcg(ji+nimppt(jn)-1-ji_off,jj+njmppt(jn)-1-jj_off) ENDDO ENDDO ENDDO ENDIF ! C. Scatter png into NEMO field (pn) for each processor IF ( jpnij > 1) THEN CALL mppsync CALL mppscatter (png,0,pn) CALL mppsync ELSE pn(:,:)=png(:,:,1) ENDIF #endif ! D. Ensure all haloes are filled in pn CALL lbc_lnk( pn , cd_type, psgn ) END SUBROUTINE cice2nemo #else !!---------------------------------------------------------------------- !! Default option Dummy module NO CICE sea-ice model !!---------------------------------------------------------------------- !! $Id: sbcice_cice.F90 2544 2015-08-24 09:00:45Z ufla $ CONTAINS SUBROUTINE sbc_ice_cice ( kt, ksbc ) ! Dummy routine WRITE(*,*) 'sbc_ice_cice: You should not have seen this print! error?', kt END SUBROUTINE sbc_ice_cice SUBROUTINE cice_sbc_init (ksbc) ! Dummy routine WRITE(*,*) 'cice_sbc_init: You should not have seen this print! error?' END SUBROUTINE cice_sbc_init SUBROUTINE cice_sbc_final ! Dummy routine WRITE(*,*) 'cice_sbc_final: You should not have seen this print! error?' END SUBROUTINE cice_sbc_final #endif !!====================================================================== END MODULE sbcice_cice