MODULE limdyn !!====================================================================== !! *** MODULE limdyn *** !! Sea-Ice dynamics : !!====================================================================== !! history : 1.0 ! 2002-08 (C. Ethe, G. Madec) original VP code !! 3.0 ! 2007-03 (MA Morales Maqueda, S. Bouillon, M. Vancoppenolle) LIM3: EVP-Cgrid !! 3.5 ! 2011-02 (G. Madec) dynamical allocation !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' : LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_dyn : computes ice velocities !! lim_dyn_init : initialization and namelist read !!---------------------------------------------------------------------- USE phycst ! physical constants USE dom_oce ! ocean space and time domain USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE ice ! LIM-3 variables USE dom_ice ! LIM-3 domain USE limrhg ! LIM-3 rheology USE lbclnk ! lateral boundary conditions - MPP exchanges USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE in_out_manager ! I/O manager USE prtctl ! Print control USE lib_fortran ! glob_sum USE timing ! Timing USE limcons ! conservation tests USE limvar IMPLICIT NONE PRIVATE PUBLIC lim_dyn ! routine called by ice_step !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2011) !! $Id: limdyn.F90 7597 2017-01-20 18:40:06Z clem $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_dyn( kt ) !!------------------------------------------------------------------- !! *** ROUTINE lim_dyn *** !! !! ** Purpose : compute ice velocity and ocean-ice stress !! !! ** Method : !! !! ** Action : - Initialisation !! - Call of the dynamic routine for each hemisphere !! - computation of the stress at the ocean surface !! - treatment of the case if no ice dynamic !!------------------------------------------------------------------------------------ INTEGER, INTENT(in) :: kt ! number of iteration !! INTEGER :: ji, jj, jl, ja ! dummy loop indices INTEGER :: i_j1, i_jpj ! Starting/ending j-indices for rheology REAL(wp) :: zcoef ! local scalar REAL(wp), POINTER, DIMENSION(:) :: zswitch ! i-averaged indicator of sea-ice REAL(wp), POINTER, DIMENSION(:) :: zmsk ! i-averaged of tmask REAL(wp), POINTER, DIMENSION(:,:) :: zu_io, zv_io ! ice-ocean velocity ! REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b !!--------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('limdyn') CALL wrk_alloc( jpi, jpj, zu_io, zv_io ) CALL wrk_alloc( jpj, zswitch, zmsk ) CALL lim_var_agg(1) ! aggregate ice categories IF( kt == nit000 ) CALL lim_dyn_init ! Initialization (first time-step only) IF( ln_limdyn ) THEN ! ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(0, 'limdyn', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) u_ice_b(:,:) = u_ice(:,:) * umask(:,:,1) v_ice_b(:,:) = v_ice(:,:) * vmask(:,:,1) ! Rheology (ice dynamics) ! ======== ! Define the j-limits where ice rheology is computed ! --------------------------------------------------- IF( lk_mpp .OR. lk_mpp_rep ) THEN ! mpp: compute over the whole domain i_j1 = 1 i_jpj = jpj IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj ) CALL lim_rhg( i_j1, i_jpj ) ELSE ! optimization of the computational area ! DO jj = 1, jpj zswitch(jj) = SUM( 1.0 - at_i(:,jj) ) ! = REAL(jpj) if ocean everywhere on a j-line zmsk (jj) = SUM( tmask(:,jj,1) ) ! = 0 if land everywhere on a j-line END DO IF( l_jeq ) THEN ! local domain include both hemisphere ! ! Rheology is computed in each hemisphere ! ! only over the ice cover latitude strip ! Northern hemisphere i_j1 = njeq i_jpj = jpj DO WHILE ( i_j1 <= jpj .AND. zswitch(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 ) i_j1 = i_j1 + 1 END DO i_j1 = MAX( 1, i_j1-2 ) IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : NH i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj ) CALL lim_rhg( i_j1, i_jpj ) ! ! Southern hemisphere i_j1 = 1 i_jpj = njeq DO WHILE ( i_jpj >= 1 .AND. zswitch(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 ) i_jpj = i_jpj - 1 END DO i_jpj = MIN( jpj, i_jpj+1 ) IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : SH i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj ) ! CALL lim_rhg( i_j1, i_jpj ) ! ELSE ! local domain extends over one hemisphere only ! ! Rheology is computed only over the ice cover ! ! latitude strip i_j1 = 1 DO WHILE ( i_j1 <= jpj .AND. zswitch(i_j1) == FLOAT(jpi) .AND. zmsk(i_j1) /=0 ) i_j1 = i_j1 + 1 END DO i_j1 = MAX( 1, i_j1-2 ) i_jpj = jpj DO WHILE ( i_jpj >= 1 .AND. zswitch(i_jpj) == FLOAT(jpi) .AND. zmsk(i_jpj) /=0 ) i_jpj = i_jpj - 1 END DO i_jpj = MIN( jpj, i_jpj+1) ! IF(ln_ctl) CALL prt_ctl_info( 'lim_dyn : one hemisphere: i_j1 = ', ivar1=i_j1, clinfo2=' ij_jpj = ', ivar2=i_jpj ) ! CALL lim_rhg( i_j1, i_jpj ) ! ENDIF ! ENDIF ! computation of friction velocity ! -------------------------------- ! ice-ocean velocity at U & V-points (u_ice v_ice at U- & V-points ; ssu_m, ssv_m at U- & V-points) zu_io(:,:) = u_ice(:,:) - ssu_m(:,:) zv_io(:,:) = v_ice(:,:) - ssv_m(:,:) ! frictional velocity at T-point zcoef = 0.5_wp * rn_cio DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ust2s(ji,jj) = zcoef * ( zu_io(ji,jj) * zu_io(ji,jj) + zu_io(ji-1,jj) * zu_io(ji-1,jj) & & + zv_io(ji,jj) * zv_io(ji,jj) + zv_io(ji,jj-1) * zv_io(ji,jj-1) ) * tmask(ji,jj,1) END DO END DO ! ! conservation test IF( ln_limdiahsb ) CALL lim_cons_hsm(1, 'limdyn', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) ! ELSE ! no ice dynamics : transmit directly the atmospheric stress to the ocean ! zcoef = SQRT( 0.5_wp ) * r1_rau0 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ust2s(ji,jj) = zcoef * SQRT( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) & & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) * tmask(ji,jj,1) END DO END DO ! ENDIF CALL lbc_lnk( ust2s, 'T', 1. ) ! T-point IF(ln_ctl) THEN ! Control print CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Cell values : ') CALL prt_ctl_info(' ~~~~~~~~~~~~~ ') CALL prt_ctl(tab2d_1=ust2s , clinfo1=' lim_dyn : ust2s :') CALL prt_ctl(tab2d_1=divu_i , clinfo1=' lim_dyn : divu_i :') CALL prt_ctl(tab2d_1=delta_i , clinfo1=' lim_dyn : delta_i :') CALL prt_ctl(tab2d_1=strength , clinfo1=' lim_dyn : strength :') CALL prt_ctl(tab2d_1=e12t , clinfo1=' lim_dyn : cell area :') CALL prt_ctl(tab2d_1=at_i , clinfo1=' lim_dyn : at_i :') CALL prt_ctl(tab2d_1=vt_i , clinfo1=' lim_dyn : vt_i :') CALL prt_ctl(tab2d_1=vt_s , clinfo1=' lim_dyn : vt_s :') CALL prt_ctl(tab2d_1=stress1_i , clinfo1=' lim_dyn : stress1_i :') CALL prt_ctl(tab2d_1=stress2_i , clinfo1=' lim_dyn : stress2_i :') CALL prt_ctl(tab2d_1=stress12_i, clinfo1=' lim_dyn : stress12_i:') DO jl = 1, jpl CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Category : ', ivar1=jl) CALL prt_ctl_info(' ~~~~~~~~~~') CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' lim_dyn : a_i : ') CALL prt_ctl(tab2d_1=ht_i (:,:,jl) , clinfo1= ' lim_dyn : ht_i : ') CALL prt_ctl(tab2d_1=ht_s (:,:,jl) , clinfo1= ' lim_dyn : ht_s : ') CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' lim_dyn : v_i : ') CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' lim_dyn : v_s : ') CALL prt_ctl(tab2d_1=e_s (:,:,1,jl) , clinfo1= ' lim_dyn : e_s : ') CALL prt_ctl(tab2d_1=t_su (:,:,jl) , clinfo1= ' lim_dyn : t_su : ') CALL prt_ctl(tab2d_1=t_s (:,:,1,jl) , clinfo1= ' lim_dyn : t_snow : ') CALL prt_ctl(tab2d_1=sm_i (:,:,jl) , clinfo1= ' lim_dyn : sm_i : ') CALL prt_ctl(tab2d_1=smv_i (:,:,jl) , clinfo1= ' lim_dyn : smv_i : ') DO ja = 1, nlay_i CALL prt_ctl_info(' ') CALL prt_ctl_info(' - Layer : ', ivar1=ja) CALL prt_ctl_info(' ~~~~~~~') CALL prt_ctl(tab2d_1=t_i(:,:,ja,jl) , clinfo1= ' lim_dyn : t_i : ') CALL prt_ctl(tab2d_1=e_i(:,:,ja,jl) , clinfo1= ' lim_dyn : e_i : ') END DO END DO ENDIF ! CALL wrk_dealloc( jpi, jpj, zu_io, zv_io ) CALL wrk_dealloc( jpj, zswitch, zmsk ) ! IF( nn_timing == 1 ) CALL timing_stop('limdyn') END SUBROUTINE lim_dyn SUBROUTINE lim_dyn_init !!------------------------------------------------------------------- !! *** ROUTINE lim_dyn_init *** !! !! ** Purpose : Physical constants and parameters linked to the ice !! dynamics !! !! ** Method : Read the namicedyn namelist and check the ice-dynamic !! parameter values called at the first timestep (nit000) !! !! ** input : Namelist namicedyn !!------------------------------------------------------------------- INTEGER :: ios ! Local integer output status for namelist read NAMELIST/namicedyn/ nn_icestr, ln_icestr_bvf, rn_pe_rdg, rn_pstar, rn_crhg, rn_cio, rn_creepl, rn_ecc, & & nn_nevp, rn_relast !!------------------------------------------------------------------- REWIND( numnam_ice_ref ) ! Namelist namicedyn in reference namelist : Ice dynamics READ ( numnam_ice_ref, namicedyn, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicedyn in reference namelist', lwp ) REWIND( numnam_ice_cfg ) ! Namelist namicedyn in configuration namelist : Ice dynamics READ ( numnam_ice_cfg, namicedyn, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namicedyn in configuration namelist', lwp ) IF(lwm) WRITE ( numoni, namicedyn ) IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'lim_dyn_init : ice parameters for ice dynamics ' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*)' ice strength parameterization (0=Hibler 1=Rothrock) nn_icestr = ', nn_icestr WRITE(numout,*)' Including brine volume in ice strength comp. ln_icestr_bvf = ', ln_icestr_bvf WRITE(numout,*)' Ratio of ridging work to PotEner change in ridging rn_pe_rdg = ', rn_pe_rdg WRITE(numout,*) ' drag coefficient for oceanic stress rn_cio = ', rn_cio WRITE(numout,*) ' first bulk-rheology parameter rn_pstar = ', rn_pstar WRITE(numout,*) ' second bulk-rhelogy parameter rn_crhg = ', rn_crhg WRITE(numout,*) ' creep limit rn_creepl = ', rn_creepl WRITE(numout,*) ' eccentricity of the elliptical yield curve rn_ecc = ', rn_ecc WRITE(numout,*) ' number of iterations for subcycling nn_nevp = ', nn_nevp WRITE(numout,*) ' ratio of elastic timescale over ice time step rn_relast = ', rn_relast ENDIF ! usecc2 = 1._wp / ( rn_ecc * rn_ecc ) rhoco = rau0 * rn_cio ! END SUBROUTINE lim_dyn_init #else !!---------------------------------------------------------------------- !! Default option Empty module NO LIM sea-ice model !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_dyn ! Empty routine END SUBROUTINE lim_dyn #endif !!====================================================================== END MODULE limdyn