sbcrnf.F90 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567
  1. MODULE sbcrnf
  2. !!======================================================================
  3. !! *** MODULE sbcrnf ***
  4. !! Ocean forcing: river runoff
  5. !!=====================================================================
  6. !! History : OPA ! 2000-11 (R. Hordoir, E. Durand) NetCDF FORMAT
  7. !! NEMO 1.0 ! 2002-09 (G. Madec) F90: Free form and module
  8. !! 3.0 ! 2006-07 (G. Madec) Surface module
  9. !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put
  10. !! 3.3 ! 2010-10 (R. Furner, G. Madec) runoff distributed over ocean levels
  11. !!----------------------------------------------------------------------
  12. !!----------------------------------------------------------------------
  13. !! sbc_rnf : monthly runoffs read in a NetCDF file
  14. !! sbc_rnf_init : runoffs initialisation
  15. !! rnf_mouth : set river mouth mask
  16. !!----------------------------------------------------------------------
  17. USE dom_oce ! ocean space and time domain
  18. USE phycst ! physical constants
  19. USE sbc_oce ! surface boundary condition variables
  20. USE eosbn2 ! Equation Of State
  21. USE closea, ONLY: l_clo_rnf, clo_rnf ! closed seas
  22. !
  23. USE in_out_manager ! I/O manager
  24. USE fldread ! read input field at current time step
  25. USE iom ! I/O module
  26. USE lib_mpp ! MPP library
  27. IMPLICIT NONE
  28. PRIVATE
  29. PUBLIC sbc_rnf ! called in sbcmod module
  30. PUBLIC sbc_rnf_div ! called in divhor module
  31. PUBLIC sbc_rnf_alloc ! called in sbcmod module
  32. PUBLIC sbc_rnf_init ! called in sbcmod module
  33. ! !!* namsbc_rnf namelist *
  34. CHARACTER(len=100) :: cn_dir !: Root directory for location of rnf files
  35. LOGICAL , PUBLIC :: ln_rnf_depth !: depth river runoffs attribute specified in a file
  36. LOGICAL :: ln_rnf_depth_ini !: depth river runoffs computed at the initialisation
  37. REAL(wp) :: rn_rnf_max !: maximum value of the runoff climatologie (ln_rnf_depth_ini =T)
  38. REAL(wp) :: rn_dep_max !: depth over which runoffs is spread (ln_rnf_depth_ini =T)
  39. INTEGER :: nn_rnf_depth_file !: create (=1) a runoff depth file or not (=0)
  40. LOGICAL , PUBLIC :: ln_rnf_icb !: iceberg flux is specified in a file
  41. LOGICAL :: ln_rnf_tem !: temperature river runoffs attribute specified in a file
  42. LOGICAL , PUBLIC :: ln_rnf_sal !: salinity river runoffs attribute specified in a file
  43. TYPE(FLD_N) , PUBLIC :: sn_rnf !: information about the runoff file to be read
  44. TYPE(FLD_N) :: sn_cnf !: information about the runoff mouth file to be read
  45. TYPE(FLD_N) :: sn_i_rnf !: information about the iceberg flux file to be read
  46. TYPE(FLD_N) :: sn_s_rnf !: information about the salinities of runoff file to be read
  47. TYPE(FLD_N) :: sn_t_rnf !: information about the temperatures of runoff file to be read
  48. TYPE(FLD_N) :: sn_dep_rnf !: information about the depth which river inflow affects
  49. LOGICAL , PUBLIC :: ln_rnf_mouth !: specific treatment in mouths vicinity
  50. REAL(wp) :: rn_hrnf !: runoffs, depth over which enhanced vertical mixing is used
  51. REAL(wp) , PUBLIC :: rn_avt_rnf !: runoffs, value of the additional vertical mixing coef. [m2/s]
  52. REAL(wp) , PUBLIC :: rn_rfact !: multiplicative factor for runoff
  53. LOGICAL , PUBLIC :: l_rnfcpl = .false. !: runoffs recieved from oasis
  54. INTEGER , PUBLIC :: nkrnf = 0 !: nb of levels over which Kz is increased at river mouths
  55. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnfmsk !: river mouth mask (hori.)
  56. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: rnfmsk_z !: river mouth mask (vert.)
  57. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: h_rnf !: depth of runoff in m
  58. INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nk_rnf !: depth of runoff in model levels
  59. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: rnf_tsc_b, rnf_tsc !: before and now T & S runoff contents [K.m/s & PSU.m/s]
  60. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnf ! structure: river runoff (file information, fields read)
  61. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_i_rnf ! structure: iceberg flux (file information, fields read)
  62. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_s_rnf ! structure: river runoff salinity (file information, fields read)
  63. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_t_rnf ! structure: river runoff temperature (file information, fields read)
  64. !! * Substitutions
  65. # include "do_loop_substitute.h90"
  66. # include "domzgr_substitute.h90"
  67. !!----------------------------------------------------------------------
  68. !! NEMO/OCE 4.0 , NEMO Consortium (2018)
  69. !! $Id: sbcrnf.F90 15190 2021-08-13 12:52:50Z gsamson $
  70. !! Software governed by the CeCILL license (see ./LICENSE)
  71. !!----------------------------------------------------------------------
  72. CONTAINS
  73. INTEGER FUNCTION sbc_rnf_alloc()
  74. !!----------------------------------------------------------------------
  75. !! *** ROUTINE sbc_rnf_alloc ***
  76. !!----------------------------------------------------------------------
  77. ALLOCATE( rnfmsk(jpi,jpj) , rnfmsk_z(jpk) , &
  78. & h_rnf (jpi,jpj) , nk_rnf (jpi,jpj) , &
  79. & rnf_tsc_b(jpi,jpj,jpts) , rnf_tsc (jpi,jpj,jpts) , STAT=sbc_rnf_alloc )
  80. !
  81. CALL mpp_sum ( 'sbcrnf', sbc_rnf_alloc )
  82. IF( sbc_rnf_alloc > 0 ) CALL ctl_warn('sbc_rnf_alloc: allocation of arrays failed')
  83. END FUNCTION sbc_rnf_alloc
  84. SUBROUTINE sbc_rnf( kt )
  85. !!----------------------------------------------------------------------
  86. !! *** ROUTINE sbc_rnf ***
  87. !!
  88. !! ** Purpose : Introduce a climatological run off forcing
  89. !!
  90. !! ** Method : Set each river mouth with a monthly climatology
  91. !! provided from different data.
  92. !! CAUTION : upward water flux, runoff forced to be < 0
  93. !!
  94. !! ** Action : runoff updated runoff field at time-step kt
  95. !!----------------------------------------------------------------------
  96. INTEGER, INTENT(in) :: kt ! ocean time step
  97. !
  98. INTEGER :: ji, jj ! dummy loop indices
  99. INTEGER :: z_err = 0 ! dummy integer for error handling
  100. !!----------------------------------------------------------------------
  101. REAL(wp), DIMENSION(jpi,jpj) :: ztfrz ! freezing point used for temperature correction
  102. !
  103. !
  104. ! !-------------------!
  105. ! ! Update runoff !
  106. ! !-------------------!
  107. !
  108. !
  109. IF( .NOT. l_rnfcpl ) THEN
  110. CALL fld_read ( kt, nn_fsbc, sf_rnf ) ! Read Runoffs data and provide it at kt ( runoffs + iceberg )
  111. IF( ln_rnf_icb ) CALL fld_read ( kt, nn_fsbc, sf_i_rnf ) ! idem for iceberg flux if required
  112. ENDIF
  113. IF( ln_rnf_tem ) CALL fld_read ( kt, nn_fsbc, sf_t_rnf ) ! idem for runoffs temperature if required
  114. IF( ln_rnf_sal ) CALL fld_read ( kt, nn_fsbc, sf_s_rnf ) ! idem for runoffs salinity if required
  115. !
  116. IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN
  117. !
  118. IF( .NOT. l_rnfcpl ) THEN
  119. rnf(:,:) = rn_rfact * ( sf_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt
  120. IF( ln_rnf_icb ) THEN
  121. fwficb(:,:) = rn_rfact * ( sf_i_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt
  122. rnf(:,:) = rnf(:,:) + fwficb(:,:)
  123. qns(:,:) = qns(:,:) - fwficb(:,:) * rLfus
  124. !!qns_tot(:,:) = qns_tot(:,:) - fwficb(:,:) * rLfus
  125. !!qns_oce(:,:) = qns_oce(:,:) - fwficb(:,:) * rLfus
  126. CALL iom_put( 'iceberg_cea' , fwficb(:,:) ) ! output iceberg flux
  127. CALL iom_put( 'hflx_icb_cea' , -fwficb(:,:) * rLfus ) ! output Heat Flux into Sea Water due to Iceberg Thermodynamics -->
  128. ENDIF
  129. ENDIF
  130. !
  131. ! ! set temperature & salinity content of runoffs
  132. IF( ln_rnf_tem ) THEN ! use runoffs temperature data
  133. rnf_tsc(:,:,jp_tem) = ( sf_t_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0
  134. CALL eos_fzp( sss_m(:,:), ztfrz(:,:) )
  135. WHERE( sf_t_rnf(1)%fnow(:,:,1) == -999._wp ) ! if missing data value use SST as runoffs temperature
  136. rnf_tsc(:,:,jp_tem) = sst_m(:,:) * rnf(:,:) * r1_rho0
  137. END WHERE
  138. ELSE ! use SST as runoffs temperature
  139. !CEOD River is fresh water so must at least be 0 unless we consider ice
  140. rnf_tsc(:,:,jp_tem) = MAX( sst_m(:,:), 0.0_wp ) * rnf(:,:) * r1_rho0
  141. ENDIF
  142. ! ! use runoffs salinity data
  143. IF( ln_rnf_sal ) rnf_tsc(:,:,jp_sal) = ( sf_s_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0
  144. ! ! else use S=0 for runoffs (done one for all in the init)
  145. CALL iom_put( 'runoffs' , rnf(:,:) ) ! output runoff mass flux
  146. IF( iom_use('hflx_rnf_cea') ) CALL iom_put( 'hflx_rnf_cea', rnf_tsc(:,:,jp_tem) * rho0 * rcp ) ! output runoff sensible heat (W/m2)
  147. IF( iom_use('sflx_rnf_cea') ) CALL iom_put( 'sflx_rnf_cea', rnf_tsc(:,:,jp_sal) * rho0 ) ! output runoff salt flux (g/m2/s)
  148. ENDIF
  149. !
  150. ! ! ---------------------------------------- !
  151. IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
  152. ! ! ---------------------------------------- !
  153. IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN !* Restart: read in restart file
  154. IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields red in the restart file', lrxios
  155. CALL iom_get( numror, jpdom_auto, 'rnf_b' , rnf_b ) ! before runoff
  156. CALL iom_get( numror, jpdom_auto, 'rnf_hc_b', rnf_tsc_b(:,:,jp_tem) ) ! before heat content of runoff
  157. CALL iom_get( numror, jpdom_auto, 'rnf_sc_b', rnf_tsc_b(:,:,jp_sal) ) ! before salinity content of runoff
  158. ELSE !* no restart: set from nit000 values
  159. IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields set to nit000'
  160. rnf_b (:,: ) = rnf (:,: )
  161. rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:)
  162. ENDIF
  163. ENDIF
  164. ! ! ---------------------------------------- !
  165. IF( lrst_oce ) THEN ! Write in the ocean restart file !
  166. ! ! ---------------------------------------- !
  167. IF(lwp) WRITE(numout,*)
  168. IF(lwp) WRITE(numout,*) 'sbcrnf : runoff forcing fields written in ocean restart file ', &
  169. & 'at it= ', kt,' date= ', ndastp
  170. IF(lwp) WRITE(numout,*) '~~~~'
  171. CALL iom_rstput( kt, nitrst, numrow, 'rnf_b' , rnf )
  172. CALL iom_rstput( kt, nitrst, numrow, 'rnf_hc_b', rnf_tsc(:,:,jp_tem) )
  173. CALL iom_rstput( kt, nitrst, numrow, 'rnf_sc_b', rnf_tsc(:,:,jp_sal) )
  174. ENDIF
  175. !
  176. END SUBROUTINE sbc_rnf
  177. SUBROUTINE sbc_rnf_div( phdivn, Kmm )
  178. !!----------------------------------------------------------------------
  179. !! *** ROUTINE sbc_rnf ***
  180. !!
  181. !! ** Purpose : update the horizontal divergence with the runoff inflow
  182. !!
  183. !! ** Method :
  184. !! CAUTION : rnf is positive (inflow) decreasing the
  185. !! divergence and expressed in m/s
  186. !!
  187. !! ** Action : phdivn decreased by the runoff inflow
  188. !!----------------------------------------------------------------------
  189. INTEGER , INTENT(in ) :: Kmm ! ocean time level index
  190. REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence
  191. !!
  192. INTEGER :: ji, jj, jk ! dummy loop indices
  193. REAL(wp) :: zfact ! local scalar
  194. !!----------------------------------------------------------------------
  195. !
  196. zfact = 0.5_wp
  197. !
  198. IF( ln_rnf_depth .OR. ln_rnf_depth_ini ) THEN !== runoff distributed over several levels ==!
  199. IF( ln_linssh ) THEN !* constant volume case : just apply the runoff input flow
  200. DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
  201. DO jk = 1, nk_rnf(ji,jj)
  202. phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj)
  203. END DO
  204. END_2D
  205. ELSE !* variable volume case
  206. DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls ) ! update the depth over which runoffs are distributed
  207. h_rnf(ji,jj) = 0._wp
  208. DO jk = 1, nk_rnf(ji,jj) ! recalculates h_rnf to be the depth in metres
  209. h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm) ! to the bottom of the relevant grid box
  210. END DO
  211. END_2D
  212. DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! apply the runoff input flow
  213. DO jk = 1, nk_rnf(ji,jj)
  214. phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj)
  215. END DO
  216. END_2D
  217. ENDIF
  218. ELSE !== runoff put only at the surface ==!
  219. DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
  220. h_rnf (ji,jj) = e3t(ji,jj,1,Kmm) ! update h_rnf to be depth of top box
  221. END_2D
  222. DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
  223. phdivn(ji,jj,1) = phdivn(ji,jj,1) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / e3t(ji,jj,1,Kmm)
  224. END_2D
  225. ENDIF
  226. !
  227. END SUBROUTINE sbc_rnf_div
  228. SUBROUTINE sbc_rnf_init( Kmm )
  229. !!----------------------------------------------------------------------
  230. !! *** ROUTINE sbc_rnf_init ***
  231. !!
  232. !! ** Purpose : Initialisation of the runoffs if (ln_rnf=T)
  233. !!
  234. !! ** Method : - read the runoff namsbc_rnf namelist
  235. !!
  236. !! ** Action : - read parameters
  237. !!----------------------------------------------------------------------
  238. INTEGER, INTENT(in) :: Kmm ! ocean time level index
  239. CHARACTER(len=32) :: rn_dep_file ! runoff file name
  240. INTEGER :: ji, jj, jk, jm ! dummy loop indices
  241. INTEGER :: ierror, inum ! temporary integer
  242. INTEGER :: ios ! Local integer output status for namelist read
  243. INTEGER :: nbrec ! temporary integer
  244. REAL(wp) :: zacoef
  245. REAL(wp), DIMENSION(jpi,jpj,2) :: zrnfcl
  246. !!
  247. NAMELIST/namsbc_rnf/ cn_dir , ln_rnf_depth, ln_rnf_tem, ln_rnf_sal, ln_rnf_icb, &
  248. & sn_rnf, sn_cnf , sn_i_rnf, sn_s_rnf , sn_t_rnf , sn_dep_rnf, &
  249. & ln_rnf_mouth , rn_hrnf , rn_avt_rnf, rn_rfact, &
  250. & ln_rnf_depth_ini , rn_dep_max , rn_rnf_max, nn_rnf_depth_file
  251. !!----------------------------------------------------------------------
  252. !
  253. ! !== allocate runoff arrays
  254. IF( sbc_rnf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_rnf_alloc : unable to allocate arrays' )
  255. !
  256. ! ! ============
  257. ! ! Namelist
  258. ! ! ============
  259. !
  260. READ ( numnam_ref, namsbc_rnf, IOSTAT = ios, ERR = 901)
  261. 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in reference namelist' )
  262. READ ( numnam_cfg, namsbc_rnf, IOSTAT = ios, ERR = 902 )
  263. 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in configuration namelist' )
  264. IF(lwm) WRITE ( numond, namsbc_rnf )
  265. !
  266. IF( .NOT. ln_rnf ) THEN ! no specific treatment in vicinity of river mouths
  267. ln_rnf_mouth = .FALSE. ! default definition needed for example by sbc_ssr or by tra_adv_muscl
  268. ln_rnf_tem = .FALSE.
  269. ln_rnf_sal = .FALSE.
  270. ln_rnf_icb = .FALSE.
  271. nkrnf = 0
  272. rnf (:,:) = 0.0_wp
  273. rnf_b (:,:) = 0.0_wp
  274. rnfmsk (:,:) = 0.0_wp
  275. rnfmsk_z(:) = 0.0_wp
  276. RETURN
  277. ENDIF
  278. !
  279. ! ! Control print
  280. IF(lwp) THEN
  281. WRITE(numout,*)
  282. WRITE(numout,*) 'sbc_rnf_init : runoff '
  283. WRITE(numout,*) '~~~~~~~~~~~~ '
  284. WRITE(numout,*) ' Namelist namsbc_rnf'
  285. WRITE(numout,*) ' specific river mouths treatment ln_rnf_mouth = ', ln_rnf_mouth
  286. WRITE(numout,*) ' river mouth additional Kz rn_avt_rnf = ', rn_avt_rnf
  287. WRITE(numout,*) ' depth of river mouth additional mixing rn_hrnf = ', rn_hrnf
  288. WRITE(numout,*) ' multiplicative factor for runoff rn_rfact = ', rn_rfact
  289. ENDIF
  290. ! ! ==================
  291. ! ! Type of runoff
  292. ! ! ==================
  293. !
  294. IF( .NOT. l_rnfcpl ) THEN
  295. ALLOCATE( sf_rnf(1), STAT=ierror ) ! Create sf_rnf structure (runoff inflow)
  296. IF(lwp) WRITE(numout,*)
  297. IF(lwp) WRITE(numout,*) ' ==>>> runoffs inflow read in a file'
  298. IF( ierror > 0 ) THEN
  299. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_rnf structure' ) ; RETURN
  300. ENDIF
  301. ALLOCATE( sf_rnf(1)%fnow(jpi,jpj,1) )
  302. IF( sn_rnf%ln_tint ) ALLOCATE( sf_rnf(1)%fdta(jpi,jpj,1,2) )
  303. CALL fld_fill( sf_rnf, (/ sn_rnf /), cn_dir, 'sbc_rnf_init', 'read runoffs data', 'namsbc_rnf', no_print )
  304. !
  305. IF( ln_rnf_icb ) THEN ! Create (if required) sf_i_rnf structure
  306. IF(lwp) WRITE(numout,*)
  307. IF(lwp) WRITE(numout,*) ' iceberg flux read in a file'
  308. ALLOCATE( sf_i_rnf(1), STAT=ierror )
  309. IF( ierror > 0 ) THEN
  310. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_i_rnf structure' ) ; RETURN
  311. ENDIF
  312. ALLOCATE( sf_i_rnf(1)%fnow(jpi,jpj,1) )
  313. IF( sn_i_rnf%ln_tint ) ALLOCATE( sf_i_rnf(1)%fdta(jpi,jpj,1,2) )
  314. CALL fld_fill (sf_i_rnf, (/ sn_i_rnf /), cn_dir, 'sbc_rnf_init', 'read iceberg flux data', 'namsbc_rnf' )
  315. ELSE
  316. fwficb(:,:) = 0._wp
  317. ENDIF
  318. ENDIF
  319. !
  320. IF( ln_rnf_tem ) THEN ! Create (if required) sf_t_rnf structure
  321. IF(lwp) WRITE(numout,*)
  322. IF(lwp) WRITE(numout,*) ' ==>>> runoffs temperatures read in a file'
  323. ALLOCATE( sf_t_rnf(1), STAT=ierror )
  324. IF( ierror > 0 ) THEN
  325. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_t_rnf structure' ) ; RETURN
  326. ENDIF
  327. ALLOCATE( sf_t_rnf(1)%fnow(jpi,jpj,1) )
  328. IF( sn_t_rnf%ln_tint ) ALLOCATE( sf_t_rnf(1)%fdta(jpi,jpj,1,2) )
  329. CALL fld_fill (sf_t_rnf, (/ sn_t_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff temperature data', 'namsbc_rnf', no_print )
  330. ENDIF
  331. !
  332. IF( ln_rnf_sal ) THEN ! Create (if required) sf_s_rnf and sf_t_rnf structures
  333. IF(lwp) WRITE(numout,*)
  334. IF(lwp) WRITE(numout,*) ' ==>>> runoffs salinities read in a file'
  335. ALLOCATE( sf_s_rnf(1), STAT=ierror )
  336. IF( ierror > 0 ) THEN
  337. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_s_rnf structure' ) ; RETURN
  338. ENDIF
  339. ALLOCATE( sf_s_rnf(1)%fnow(jpi,jpj,1) )
  340. IF( sn_s_rnf%ln_tint ) ALLOCATE( sf_s_rnf(1)%fdta(jpi,jpj,1,2) )
  341. CALL fld_fill (sf_s_rnf, (/ sn_s_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff salinity data', 'namsbc_rnf', no_print )
  342. ENDIF
  343. !
  344. IF( ln_rnf_depth ) THEN ! depth of runoffs set from a file
  345. IF(lwp) WRITE(numout,*)
  346. IF(lwp) WRITE(numout,*) ' ==>>> runoffs depth read in a file'
  347. rn_dep_file = TRIM( cn_dir )//TRIM( sn_dep_rnf%clname )
  348. IF( .NOT. sn_dep_rnf%ln_clim ) THEN ; WRITE(rn_dep_file, '(a,"_y",i4)' ) TRIM( rn_dep_file ), nyear ! add year
  349. IF( sn_dep_rnf%clftyp == 'monthly' ) WRITE(rn_dep_file, '(a,"m",i2)' ) TRIM( rn_dep_file ), nmonth ! add month
  350. ENDIF
  351. CALL iom_open ( rn_dep_file, inum ) ! open file
  352. CALL iom_get ( inum, jpdom_global, sn_dep_rnf%clvar, h_rnf, kfill = jpfillcopy ) ! read the river mouth. no 0 on halos!
  353. CALL iom_close( inum ) ! close file
  354. !
  355. nk_rnf(:,:) = 0 ! set the number of level over which river runoffs are applied
  356. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
  357. IF( h_rnf(ji,jj) > 0._wp ) THEN
  358. jk = 2
  359. DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1
  360. END DO
  361. nk_rnf(ji,jj) = jk
  362. ELSEIF( h_rnf(ji,jj) == -1._wp ) THEN ; nk_rnf(ji,jj) = 1
  363. ELSEIF( h_rnf(ji,jj) == -999._wp ) THEN ; nk_rnf(ji,jj) = mbkt(ji,jj)
  364. ELSE
  365. CALL ctl_stop( 'sbc_rnf_init: runoff depth not positive, and not -999 or -1, rnf value in file fort.999' )
  366. WRITE(999,*) 'ji, jj, h_rnf(ji,jj) :', ji, jj, h_rnf(ji,jj)
  367. ENDIF
  368. END_2D
  369. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth
  370. h_rnf(ji,jj) = 0._wp
  371. DO jk = 1, nk_rnf(ji,jj)
  372. h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm)
  373. END DO
  374. END_2D
  375. !
  376. ELSE IF( ln_rnf_depth_ini ) THEN ! runoffs applied at the surface
  377. !
  378. IF(lwp) WRITE(numout,*)
  379. IF(lwp) WRITE(numout,*) ' ==>>> depth of runoff computed once from max value of runoff'
  380. IF(lwp) WRITE(numout,*) ' max value of the runoff climatologie (over global domain) rn_rnf_max = ', rn_rnf_max
  381. IF(lwp) WRITE(numout,*) ' depth over which runoffs is spread rn_dep_max = ', rn_dep_max
  382. IF(lwp) WRITE(numout,*) ' create (=1) a runoff depth file or not (=0) nn_rnf_depth_file = ', nn_rnf_depth_file
  383. CALL iom_open( TRIM( sn_rnf%clname ), inum ) ! open runoff file
  384. nbrec = iom_getszuld( inum )
  385. zrnfcl(:,:,1) = 0._wp ! init the max to 0. in 1
  386. DO jm = 1, nbrec
  387. CALL iom_get( inum, jpdom_global, TRIM( sn_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2
  388. zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1
  389. END DO
  390. CALL iom_close( inum )
  391. !
  392. ! ELIC change
  393. ! - the iceberg flux should be taken into account to compute the depth up
  394. ! to which the runoff must be distributed vertically
  395. ! - the implementation below is not perfect: it selects the maximum runoff
  396. ! or iceberg flux (over the records) instead of selecting the maximum
  397. ! (over the records) of the sum of the runoff and the iceberg flux
  398. ! - since the runoff and the iceberg flux are often not colocated, this is
  399. ! not a severe problem
  400. ! - in addition, since the runoff and iceberg flux could have different
  401. ! number of records, this would be difficult to improve
  402. !
  403. IF( ln_rnf_icb ) THEN
  404. CALL iom_open( TRIM( sn_i_rnf%clname ), inum ) ! open iceberg flux file
  405. nbrec = iom_getszuld( inum )
  406. DO jm = 1, nbrec
  407. CALL iom_get( inum, jpdom_global, TRIM( sn_i_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2
  408. zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1
  409. END DO
  410. CALL iom_close( inum )
  411. ENDIF
  412. ! end ELIC change
  413. !
  414. h_rnf(:,:) = 1.
  415. !
  416. zacoef = rn_dep_max / rn_rnf_max ! coef of linear relation between runoff and its depth (150m for max of runoff)
  417. !
  418. WHERE( zrnfcl(:,:,1) > 0._wp ) h_rnf(:,:) = zacoef * zrnfcl(:,:,1) ! compute depth for all runoffs
  419. !
  420. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! take in account min depth of ocean rn_hmin
  421. IF( zrnfcl(ji,jj,1) > 0._wp ) THEN
  422. jk = mbkt(ji,jj)
  423. h_rnf(ji,jj) = MIN( h_rnf(ji,jj), gdept_0(ji,jj,jk ) )
  424. ENDIF
  425. END_2D
  426. !
  427. nk_rnf(:,:) = 0 ! number of levels on which runoffs are distributed
  428. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
  429. IF( zrnfcl(ji,jj,1) > 0._wp ) THEN
  430. jk = 2
  431. DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1
  432. END DO
  433. nk_rnf(ji,jj) = jk
  434. ELSE
  435. nk_rnf(ji,jj) = 1
  436. ENDIF
  437. END_2D
  438. !
  439. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth
  440. h_rnf(ji,jj) = 0._wp
  441. DO jk = 1, nk_rnf(ji,jj)
  442. h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm)
  443. END DO
  444. END_2D
  445. !
  446. IF( nn_rnf_depth_file == 1 ) THEN ! save output nb levels for runoff
  447. IF(lwp) WRITE(numout,*) ' ==>>> create runoff depht file'
  448. CALL iom_open ( TRIM( sn_dep_rnf%clname ), inum, ldwrt = .TRUE. )
  449. CALL iom_rstput( 0, 0, inum, 'rodepth', h_rnf )
  450. CALL iom_close ( inum )
  451. ENDIF
  452. ELSE ! runoffs applied at the surface
  453. nk_rnf(:,:) = 1
  454. h_rnf (:,:) = e3t(:,:,1,Kmm)
  455. ENDIF
  456. !
  457. rnf(:,:) = 0._wp ! runoff initialisation
  458. rnf_tsc(:,:,:) = 0._wp ! runoffs temperature & salinty contents initilisation
  459. !
  460. ! ! ========================
  461. ! ! River mouth vicinity
  462. ! ! ========================
  463. !
  464. IF( ln_rnf_mouth ) THEN ! Specific treatment in vicinity of river mouths :
  465. ! ! - Increase Kz in surface layers ( rn_hrnf > 0 )
  466. ! ! - set to zero SSS damping (ln_ssr=T)
  467. ! ! - mixed upstream-centered (ln_traadv_cen2=T)
  468. !
  469. IF( ln_rnf_depth ) CALL ctl_warn( 'sbc_rnf_init: increased mixing turned on but effects may already', &
  470. & 'be spread through depth by ln_rnf_depth' )
  471. !
  472. nkrnf = 0 ! Number of level over which Kz increase
  473. IF( rn_hrnf > 0._wp ) THEN
  474. nkrnf = 2
  475. DO WHILE( nkrnf /= jpkm1 .AND. gdepw_1d(nkrnf+1) < rn_hrnf ) ; nkrnf = nkrnf + 1
  476. END DO
  477. IF( ln_sco ) CALL ctl_warn( 'sbc_rnf_init: number of levels over which Kz is increased is computed for zco...' )
  478. ENDIF
  479. IF(lwp) WRITE(numout,*)
  480. IF(lwp) WRITE(numout,*) ' ==>>> Specific treatment used in vicinity of river mouths :'
  481. IF(lwp) WRITE(numout,*) ' - Increase Kz in surface layers (if rn_hrnf > 0 )'
  482. IF(lwp) WRITE(numout,*) ' by ', rn_avt_rnf,' m2/s over ', nkrnf, ' w-levels'
  483. IF(lwp) WRITE(numout,*) ' - set to zero SSS damping (if ln_ssr=T)'
  484. IF(lwp) WRITE(numout,*) ' - mixed upstream-centered (if ln_traadv_cen2=T)'
  485. !
  486. CALL rnf_mouth ! set river mouth mask
  487. !
  488. ELSE ! No treatment at river mouths
  489. IF(lwp) WRITE(numout,*)
  490. IF(lwp) WRITE(numout,*) ' ==>>> No specific treatment at river mouths'
  491. rnfmsk (:,:) = 0._wp
  492. rnfmsk_z(:) = 0._wp
  493. nkrnf = 0
  494. ENDIF
  495. !
  496. END SUBROUTINE sbc_rnf_init
  497. SUBROUTINE rnf_mouth
  498. !!----------------------------------------------------------------------
  499. !! *** ROUTINE rnf_mouth ***
  500. !!
  501. !! ** Purpose : define the river mouths mask
  502. !!
  503. !! ** Method : read the river mouth mask (=0/1) in the river runoff
  504. !! climatological file. Defined a given vertical structure.
  505. !! CAUTION, the vertical structure is hard coded on the
  506. !! first 5 levels.
  507. !! This fields can be used to:
  508. !! - set an upstream advection scheme
  509. !! (ln_rnf_mouth=T and ln_traadv_cen2=T)
  510. !! - increase vertical on the top nn_krnf vertical levels
  511. !! at river runoff input grid point (nn_krnf>=2, see step.F90)
  512. !! - set to zero SSS restoring flux at river mouth grid points
  513. !!
  514. !! ** Action : rnfmsk set to 1 at river runoff input, 0 elsewhere
  515. !! rnfmsk_z vertical structure
  516. !!----------------------------------------------------------------------
  517. INTEGER :: inum ! temporary integers
  518. CHARACTER(len=140) :: cl_rnfile ! runoff file name
  519. !!----------------------------------------------------------------------
  520. !
  521. IF(lwp) WRITE(numout,*)
  522. IF(lwp) WRITE(numout,*) ' rnf_mouth : river mouth mask'
  523. IF(lwp) WRITE(numout,*) ' ~~~~~~~~~ '
  524. !
  525. cl_rnfile = TRIM( cn_dir )//TRIM( sn_cnf%clname )
  526. IF( .NOT. sn_cnf%ln_clim ) THEN ; WRITE(cl_rnfile, '(a,"_y",i4.4)' ) TRIM( cl_rnfile ), nyear ! add year
  527. IF( sn_cnf%clftyp == 'monthly' ) WRITE(cl_rnfile, '(a,"m" ,i2.2)' ) TRIM( cl_rnfile ), nmonth ! add month
  528. ENDIF
  529. !
  530. ! horizontal mask (read in NetCDF file)
  531. CALL iom_open ( cl_rnfile, inum ) ! open file
  532. CALL iom_get ( inum, jpdom_global, sn_cnf%clvar, rnfmsk ) ! read the river mouth array
  533. CALL iom_close( inum ) ! close file
  534. !
  535. IF( l_clo_rnf ) CALL clo_rnf( rnfmsk ) ! closed sea inflow set as river mouth
  536. !
  537. rnfmsk_z(:) = 0._wp ! vertical structure
  538. rnfmsk_z(1) = 1.0
  539. rnfmsk_z(2) = 1.0 ! **********
  540. rnfmsk_z(3) = 0.5 ! HARD CODED on the 5 first levels
  541. rnfmsk_z(4) = 0.25 ! **********
  542. rnfmsk_z(5) = 0.125
  543. !
  544. END SUBROUTINE rnf_mouth
  545. !!======================================================================
  546. END MODULE sbcrnf