123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 |
- MODULE sbcrnf
- !!======================================================================
- !! *** MODULE sbcrnf ***
- !! Ocean forcing: river runoff
- !!=====================================================================
- !! History : OPA ! 2000-11 (R. Hordoir, E. Durand) NetCDF FORMAT
- !! NEMO 1.0 ! 2002-09 (G. Madec) F90: Free form and module
- !! 3.0 ! 2006-07 (G. Madec) Surface module
- !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put
- !! 3.3 ! 2010-10 (R. Furner, G. Madec) runoff distributed over ocean levels
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! sbc_rnf : monthly runoffs read in a NetCDF file
- !! sbc_rnf_init : runoffs initialisation
- !! rnf_mouth : set river mouth mask
- !!----------------------------------------------------------------------
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- USE sbc_oce ! surface boundary condition variables
- USE eosbn2 ! Equation Of State
- USE closea, ONLY: l_clo_rnf, clo_rnf ! closed seas
- !
- USE in_out_manager ! I/O manager
- USE fldread ! read input field at current time step
- USE iom ! I/O module
- USE lib_mpp ! MPP library
- IMPLICIT NONE
- PRIVATE
- PUBLIC sbc_rnf ! called in sbcmod module
- PUBLIC sbc_rnf_div ! called in divhor module
- PUBLIC sbc_rnf_alloc ! called in sbcmod module
- PUBLIC sbc_rnf_init ! called in sbcmod module
- ! !!* namsbc_rnf namelist *
- CHARACTER(len=100) :: cn_dir !: Root directory for location of rnf files
- LOGICAL , PUBLIC :: ln_rnf_depth !: depth river runoffs attribute specified in a file
- LOGICAL :: ln_rnf_depth_ini !: depth river runoffs computed at the initialisation
- REAL(wp) :: rn_rnf_max !: maximum value of the runoff climatologie (ln_rnf_depth_ini =T)
- REAL(wp) :: rn_dep_max !: depth over which runoffs is spread (ln_rnf_depth_ini =T)
- INTEGER :: nn_rnf_depth_file !: create (=1) a runoff depth file or not (=0)
- LOGICAL , PUBLIC :: ln_rnf_icb !: iceberg flux is specified in a file
- LOGICAL :: ln_rnf_tem !: temperature river runoffs attribute specified in a file
- LOGICAL , PUBLIC :: ln_rnf_sal !: salinity river runoffs attribute specified in a file
- TYPE(FLD_N) , PUBLIC :: sn_rnf !: information about the runoff file to be read
- TYPE(FLD_N) :: sn_cnf !: information about the runoff mouth file to be read
- TYPE(FLD_N) :: sn_i_rnf !: information about the iceberg flux file to be read
- TYPE(FLD_N) :: sn_s_rnf !: information about the salinities of runoff file to be read
- TYPE(FLD_N) :: sn_t_rnf !: information about the temperatures of runoff file to be read
- TYPE(FLD_N) :: sn_dep_rnf !: information about the depth which river inflow affects
- LOGICAL , PUBLIC :: ln_rnf_mouth !: specific treatment in mouths vicinity
- REAL(wp) :: rn_hrnf !: runoffs, depth over which enhanced vertical mixing is used
- REAL(wp) , PUBLIC :: rn_avt_rnf !: runoffs, value of the additional vertical mixing coef. [m2/s]
- REAL(wp) , PUBLIC :: rn_rfact !: multiplicative factor for runoff
- LOGICAL , PUBLIC :: l_rnfcpl = .false. !: runoffs recieved from oasis
- INTEGER , PUBLIC :: nkrnf = 0 !: nb of levels over which Kz is increased at river mouths
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnfmsk !: river mouth mask (hori.)
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: rnfmsk_z !: river mouth mask (vert.)
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: h_rnf !: depth of runoff in m
- INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nk_rnf !: depth of runoff in model levels
- REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: rnf_tsc_b, rnf_tsc !: before and now T & S runoff contents [K.m/s & PSU.m/s]
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnf ! structure: river runoff (file information, fields read)
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_i_rnf ! structure: iceberg flux (file information, fields read)
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_s_rnf ! structure: river runoff salinity (file information, fields read)
- TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_t_rnf ! structure: river runoff temperature (file information, fields read)
- !! * Substitutions
- # include "do_loop_substitute.h90"
- # include "domzgr_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OCE 4.0 , NEMO Consortium (2018)
- !! $Id: sbcrnf.F90 15190 2021-08-13 12:52:50Z gsamson $
- !! Software governed by the CeCILL license (see ./LICENSE)
- !!----------------------------------------------------------------------
- CONTAINS
- INTEGER FUNCTION sbc_rnf_alloc()
- !!----------------------------------------------------------------------
- !! *** ROUTINE sbc_rnf_alloc ***
- !!----------------------------------------------------------------------
- ALLOCATE( rnfmsk(jpi,jpj) , rnfmsk_z(jpk) , &
- & h_rnf (jpi,jpj) , nk_rnf (jpi,jpj) , &
- & rnf_tsc_b(jpi,jpj,jpts) , rnf_tsc (jpi,jpj,jpts) , STAT=sbc_rnf_alloc )
- !
- CALL mpp_sum ( 'sbcrnf', sbc_rnf_alloc )
- IF( sbc_rnf_alloc > 0 ) CALL ctl_warn('sbc_rnf_alloc: allocation of arrays failed')
- END FUNCTION sbc_rnf_alloc
- SUBROUTINE sbc_rnf( kt )
- !!----------------------------------------------------------------------
- !! *** ROUTINE sbc_rnf ***
- !!
- !! ** Purpose : Introduce a climatological run off forcing
- !!
- !! ** Method : Set each river mouth with a monthly climatology
- !! provided from different data.
- !! CAUTION : upward water flux, runoff forced to be < 0
- !!
- !! ** Action : runoff updated runoff field at time-step kt
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time step
- !
- INTEGER :: ji, jj ! dummy loop indices
- INTEGER :: z_err = 0 ! dummy integer for error handling
- !!----------------------------------------------------------------------
- REAL(wp), DIMENSION(jpi,jpj) :: ztfrz ! freezing point used for temperature correction
- !
- !
- ! !-------------------!
- ! ! Update runoff !
- ! !-------------------!
- !
- !
- IF( .NOT. l_rnfcpl ) THEN
- CALL fld_read ( kt, nn_fsbc, sf_rnf ) ! Read Runoffs data and provide it at kt ( runoffs + iceberg )
- IF( ln_rnf_icb ) CALL fld_read ( kt, nn_fsbc, sf_i_rnf ) ! idem for iceberg flux if required
- ENDIF
- IF( ln_rnf_tem ) CALL fld_read ( kt, nn_fsbc, sf_t_rnf ) ! idem for runoffs temperature if required
- IF( ln_rnf_sal ) CALL fld_read ( kt, nn_fsbc, sf_s_rnf ) ! idem for runoffs salinity if required
- !
- IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN
- !
- IF( .NOT. l_rnfcpl ) THEN
- rnf(:,:) = rn_rfact * ( sf_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt
- IF( ln_rnf_icb ) THEN
- fwficb(:,:) = rn_rfact * ( sf_i_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt
- rnf(:,:) = rnf(:,:) + fwficb(:,:)
- qns(:,:) = qns(:,:) - fwficb(:,:) * rLfus
- !!qns_tot(:,:) = qns_tot(:,:) - fwficb(:,:) * rLfus
- !!qns_oce(:,:) = qns_oce(:,:) - fwficb(:,:) * rLfus
- CALL iom_put( 'iceberg_cea' , fwficb(:,:) ) ! output iceberg flux
- CALL iom_put( 'hflx_icb_cea' , -fwficb(:,:) * rLfus ) ! output Heat Flux into Sea Water due to Iceberg Thermodynamics -->
- ENDIF
- ENDIF
- !
- ! ! set temperature & salinity content of runoffs
- IF( ln_rnf_tem ) THEN ! use runoffs temperature data
- rnf_tsc(:,:,jp_tem) = ( sf_t_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0
- CALL eos_fzp( sss_m(:,:), ztfrz(:,:) )
- WHERE( sf_t_rnf(1)%fnow(:,:,1) == -999._wp ) ! if missing data value use SST as runoffs temperature
- rnf_tsc(:,:,jp_tem) = sst_m(:,:) * rnf(:,:) * r1_rho0
- END WHERE
- ELSE ! use SST as runoffs temperature
- !CEOD River is fresh water so must at least be 0 unless we consider ice
- rnf_tsc(:,:,jp_tem) = MAX( sst_m(:,:), 0.0_wp ) * rnf(:,:) * r1_rho0
- ENDIF
- ! ! use runoffs salinity data
- IF( ln_rnf_sal ) rnf_tsc(:,:,jp_sal) = ( sf_s_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0
- ! ! else use S=0 for runoffs (done one for all in the init)
- CALL iom_put( 'runoffs' , rnf(:,:) ) ! output runoff mass flux
- IF( iom_use('hflx_rnf_cea') ) CALL iom_put( 'hflx_rnf_cea', rnf_tsc(:,:,jp_tem) * rho0 * rcp ) ! output runoff sensible heat (W/m2)
- IF( iom_use('sflx_rnf_cea') ) CALL iom_put( 'sflx_rnf_cea', rnf_tsc(:,:,jp_sal) * rho0 ) ! output runoff salt flux (g/m2/s)
- ENDIF
- !
- ! ! ---------------------------------------- !
- IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
- ! ! ---------------------------------------- !
- IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN !* Restart: read in restart file
- IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields red in the restart file', lrxios
- CALL iom_get( numror, jpdom_auto, 'rnf_b' , rnf_b ) ! before runoff
- CALL iom_get( numror, jpdom_auto, 'rnf_hc_b', rnf_tsc_b(:,:,jp_tem) ) ! before heat content of runoff
- CALL iom_get( numror, jpdom_auto, 'rnf_sc_b', rnf_tsc_b(:,:,jp_sal) ) ! before salinity content of runoff
- ELSE !* no restart: set from nit000 values
- IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields set to nit000'
- rnf_b (:,: ) = rnf (:,: )
- rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:)
- ENDIF
- ENDIF
- ! ! ---------------------------------------- !
- IF( lrst_oce ) THEN ! Write in the ocean restart file !
- ! ! ---------------------------------------- !
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) 'sbcrnf : runoff forcing fields written in ocean restart file ', &
- & 'at it= ', kt,' date= ', ndastp
- IF(lwp) WRITE(numout,*) '~~~~'
- CALL iom_rstput( kt, nitrst, numrow, 'rnf_b' , rnf )
- CALL iom_rstput( kt, nitrst, numrow, 'rnf_hc_b', rnf_tsc(:,:,jp_tem) )
- CALL iom_rstput( kt, nitrst, numrow, 'rnf_sc_b', rnf_tsc(:,:,jp_sal) )
- ENDIF
- !
- END SUBROUTINE sbc_rnf
- SUBROUTINE sbc_rnf_div( phdivn, Kmm )
- !!----------------------------------------------------------------------
- !! *** ROUTINE sbc_rnf ***
- !!
- !! ** Purpose : update the horizontal divergence with the runoff inflow
- !!
- !! ** Method :
- !! CAUTION : rnf is positive (inflow) decreasing the
- !! divergence and expressed in m/s
- !!
- !! ** Action : phdivn decreased by the runoff inflow
- !!----------------------------------------------------------------------
- INTEGER , INTENT(in ) :: Kmm ! ocean time level index
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence
- !!
- INTEGER :: ji, jj, jk ! dummy loop indices
- REAL(wp) :: zfact ! local scalar
- !!----------------------------------------------------------------------
- !
- zfact = 0.5_wp
- !
- IF( ln_rnf_depth .OR. ln_rnf_depth_ini ) THEN !== runoff distributed over several levels ==!
- IF( ln_linssh ) THEN !* constant volume case : just apply the runoff input flow
- DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
- DO jk = 1, nk_rnf(ji,jj)
- phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj)
- END DO
- END_2D
- ELSE !* variable volume case
- DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls ) ! update the depth over which runoffs are distributed
- h_rnf(ji,jj) = 0._wp
- DO jk = 1, nk_rnf(ji,jj) ! recalculates h_rnf to be the depth in metres
- h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm) ! to the bottom of the relevant grid box
- END DO
- END_2D
- DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! apply the runoff input flow
- DO jk = 1, nk_rnf(ji,jj)
- phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj)
- END DO
- END_2D
- ENDIF
- ELSE !== runoff put only at the surface ==!
- DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
- h_rnf (ji,jj) = e3t(ji,jj,1,Kmm) ! update h_rnf to be depth of top box
- END_2D
- DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
- phdivn(ji,jj,1) = phdivn(ji,jj,1) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / e3t(ji,jj,1,Kmm)
- END_2D
- ENDIF
- !
- END SUBROUTINE sbc_rnf_div
- SUBROUTINE sbc_rnf_init( Kmm )
- !!----------------------------------------------------------------------
- !! *** ROUTINE sbc_rnf_init ***
- !!
- !! ** Purpose : Initialisation of the runoffs if (ln_rnf=T)
- !!
- !! ** Method : - read the runoff namsbc_rnf namelist
- !!
- !! ** Action : - read parameters
- !!----------------------------------------------------------------------
- INTEGER, INTENT(in) :: Kmm ! ocean time level index
- CHARACTER(len=32) :: rn_dep_file ! runoff file name
- INTEGER :: ji, jj, jk, jm ! dummy loop indices
- INTEGER :: ierror, inum ! temporary integer
- INTEGER :: ios ! Local integer output status for namelist read
- INTEGER :: nbrec ! temporary integer
- REAL(wp) :: zacoef
- REAL(wp), DIMENSION(jpi,jpj,2) :: zrnfcl
- !!
- NAMELIST/namsbc_rnf/ cn_dir , ln_rnf_depth, ln_rnf_tem, ln_rnf_sal, ln_rnf_icb, &
- & sn_rnf, sn_cnf , sn_i_rnf, sn_s_rnf , sn_t_rnf , sn_dep_rnf, &
- & ln_rnf_mouth , rn_hrnf , rn_avt_rnf, rn_rfact, &
- & ln_rnf_depth_ini , rn_dep_max , rn_rnf_max, nn_rnf_depth_file
- !!----------------------------------------------------------------------
- !
- ! !== allocate runoff arrays
- IF( sbc_rnf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_rnf_alloc : unable to allocate arrays' )
- !
- ! ! ============
- ! ! Namelist
- ! ! ============
- !
- READ ( numnam_ref, namsbc_rnf, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in reference namelist' )
- READ ( numnam_cfg, namsbc_rnf, IOSTAT = ios, ERR = 902 )
- 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in configuration namelist' )
- IF(lwm) WRITE ( numond, namsbc_rnf )
- !
- IF( .NOT. ln_rnf ) THEN ! no specific treatment in vicinity of river mouths
- ln_rnf_mouth = .FALSE. ! default definition needed for example by sbc_ssr or by tra_adv_muscl
- ln_rnf_tem = .FALSE.
- ln_rnf_sal = .FALSE.
- ln_rnf_icb = .FALSE.
- nkrnf = 0
- rnf (:,:) = 0.0_wp
- rnf_b (:,:) = 0.0_wp
- rnfmsk (:,:) = 0.0_wp
- rnfmsk_z(:) = 0.0_wp
- RETURN
- ENDIF
- !
- ! ! Control print
- IF(lwp) THEN
- WRITE(numout,*)
- WRITE(numout,*) 'sbc_rnf_init : runoff '
- WRITE(numout,*) '~~~~~~~~~~~~ '
- WRITE(numout,*) ' Namelist namsbc_rnf'
- WRITE(numout,*) ' specific river mouths treatment ln_rnf_mouth = ', ln_rnf_mouth
- WRITE(numout,*) ' river mouth additional Kz rn_avt_rnf = ', rn_avt_rnf
- WRITE(numout,*) ' depth of river mouth additional mixing rn_hrnf = ', rn_hrnf
- WRITE(numout,*) ' multiplicative factor for runoff rn_rfact = ', rn_rfact
- ENDIF
- ! ! ==================
- ! ! Type of runoff
- ! ! ==================
- !
- IF( .NOT. l_rnfcpl ) THEN
- ALLOCATE( sf_rnf(1), STAT=ierror ) ! Create sf_rnf structure (runoff inflow)
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> runoffs inflow read in a file'
- IF( ierror > 0 ) THEN
- CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_rnf structure' ) ; RETURN
- ENDIF
- ALLOCATE( sf_rnf(1)%fnow(jpi,jpj,1) )
- IF( sn_rnf%ln_tint ) ALLOCATE( sf_rnf(1)%fdta(jpi,jpj,1,2) )
- CALL fld_fill( sf_rnf, (/ sn_rnf /), cn_dir, 'sbc_rnf_init', 'read runoffs data', 'namsbc_rnf', no_print )
- !
- IF( ln_rnf_icb ) THEN ! Create (if required) sf_i_rnf structure
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' iceberg flux read in a file'
- ALLOCATE( sf_i_rnf(1), STAT=ierror )
- IF( ierror > 0 ) THEN
- CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_i_rnf structure' ) ; RETURN
- ENDIF
- ALLOCATE( sf_i_rnf(1)%fnow(jpi,jpj,1) )
- IF( sn_i_rnf%ln_tint ) ALLOCATE( sf_i_rnf(1)%fdta(jpi,jpj,1,2) )
- CALL fld_fill (sf_i_rnf, (/ sn_i_rnf /), cn_dir, 'sbc_rnf_init', 'read iceberg flux data', 'namsbc_rnf' )
- ELSE
- fwficb(:,:) = 0._wp
- ENDIF
- ENDIF
- !
- IF( ln_rnf_tem ) THEN ! Create (if required) sf_t_rnf structure
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> runoffs temperatures read in a file'
- ALLOCATE( sf_t_rnf(1), STAT=ierror )
- IF( ierror > 0 ) THEN
- CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_t_rnf structure' ) ; RETURN
- ENDIF
- ALLOCATE( sf_t_rnf(1)%fnow(jpi,jpj,1) )
- IF( sn_t_rnf%ln_tint ) ALLOCATE( sf_t_rnf(1)%fdta(jpi,jpj,1,2) )
- CALL fld_fill (sf_t_rnf, (/ sn_t_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff temperature data', 'namsbc_rnf', no_print )
- ENDIF
- !
- IF( ln_rnf_sal ) THEN ! Create (if required) sf_s_rnf and sf_t_rnf structures
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> runoffs salinities read in a file'
- ALLOCATE( sf_s_rnf(1), STAT=ierror )
- IF( ierror > 0 ) THEN
- CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_s_rnf structure' ) ; RETURN
- ENDIF
- ALLOCATE( sf_s_rnf(1)%fnow(jpi,jpj,1) )
- IF( sn_s_rnf%ln_tint ) ALLOCATE( sf_s_rnf(1)%fdta(jpi,jpj,1,2) )
- CALL fld_fill (sf_s_rnf, (/ sn_s_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff salinity data', 'namsbc_rnf', no_print )
- ENDIF
- !
- IF( ln_rnf_depth ) THEN ! depth of runoffs set from a file
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> runoffs depth read in a file'
- rn_dep_file = TRIM( cn_dir )//TRIM( sn_dep_rnf%clname )
- IF( .NOT. sn_dep_rnf%ln_clim ) THEN ; WRITE(rn_dep_file, '(a,"_y",i4)' ) TRIM( rn_dep_file ), nyear ! add year
- IF( sn_dep_rnf%clftyp == 'monthly' ) WRITE(rn_dep_file, '(a,"m",i2)' ) TRIM( rn_dep_file ), nmonth ! add month
- ENDIF
- CALL iom_open ( rn_dep_file, inum ) ! open file
- CALL iom_get ( inum, jpdom_global, sn_dep_rnf%clvar, h_rnf, kfill = jpfillcopy ) ! read the river mouth. no 0 on halos!
- CALL iom_close( inum ) ! close file
- !
- nk_rnf(:,:) = 0 ! set the number of level over which river runoffs are applied
- DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
- IF( h_rnf(ji,jj) > 0._wp ) THEN
- jk = 2
- DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1
- END DO
- nk_rnf(ji,jj) = jk
- ELSEIF( h_rnf(ji,jj) == -1._wp ) THEN ; nk_rnf(ji,jj) = 1
- ELSEIF( h_rnf(ji,jj) == -999._wp ) THEN ; nk_rnf(ji,jj) = mbkt(ji,jj)
- ELSE
- CALL ctl_stop( 'sbc_rnf_init: runoff depth not positive, and not -999 or -1, rnf value in file fort.999' )
- WRITE(999,*) 'ji, jj, h_rnf(ji,jj) :', ji, jj, h_rnf(ji,jj)
- ENDIF
- END_2D
- DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth
- h_rnf(ji,jj) = 0._wp
- DO jk = 1, nk_rnf(ji,jj)
- h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm)
- END DO
- END_2D
- !
- ELSE IF( ln_rnf_depth_ini ) THEN ! runoffs applied at the surface
- !
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> depth of runoff computed once from max value of runoff'
- IF(lwp) WRITE(numout,*) ' max value of the runoff climatologie (over global domain) rn_rnf_max = ', rn_rnf_max
- IF(lwp) WRITE(numout,*) ' depth over which runoffs is spread rn_dep_max = ', rn_dep_max
- IF(lwp) WRITE(numout,*) ' create (=1) a runoff depth file or not (=0) nn_rnf_depth_file = ', nn_rnf_depth_file
- CALL iom_open( TRIM( sn_rnf%clname ), inum ) ! open runoff file
- nbrec = iom_getszuld( inum )
- zrnfcl(:,:,1) = 0._wp ! init the max to 0. in 1
- DO jm = 1, nbrec
- CALL iom_get( inum, jpdom_global, TRIM( sn_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2
- zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1
- END DO
- CALL iom_close( inum )
- !
- ! ELIC change
- ! - the iceberg flux should be taken into account to compute the depth up
- ! to which the runoff must be distributed vertically
- ! - the implementation below is not perfect: it selects the maximum runoff
- ! or iceberg flux (over the records) instead of selecting the maximum
- ! (over the records) of the sum of the runoff and the iceberg flux
- ! - since the runoff and the iceberg flux are often not colocated, this is
- ! not a severe problem
- ! - in addition, since the runoff and iceberg flux could have different
- ! number of records, this would be difficult to improve
- !
- IF( ln_rnf_icb ) THEN
- CALL iom_open( TRIM( sn_i_rnf%clname ), inum ) ! open iceberg flux file
- nbrec = iom_getszuld( inum )
- DO jm = 1, nbrec
- CALL iom_get( inum, jpdom_global, TRIM( sn_i_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2
- zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1
- END DO
- CALL iom_close( inum )
- ENDIF
- ! end ELIC change
- !
- h_rnf(:,:) = 1.
- !
- zacoef = rn_dep_max / rn_rnf_max ! coef of linear relation between runoff and its depth (150m for max of runoff)
- !
- WHERE( zrnfcl(:,:,1) > 0._wp ) h_rnf(:,:) = zacoef * zrnfcl(:,:,1) ! compute depth for all runoffs
- !
- DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! take in account min depth of ocean rn_hmin
- IF( zrnfcl(ji,jj,1) > 0._wp ) THEN
- jk = mbkt(ji,jj)
- h_rnf(ji,jj) = MIN( h_rnf(ji,jj), gdept_0(ji,jj,jk ) )
- ENDIF
- END_2D
- !
- nk_rnf(:,:) = 0 ! number of levels on which runoffs are distributed
- DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
- IF( zrnfcl(ji,jj,1) > 0._wp ) THEN
- jk = 2
- DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1
- END DO
- nk_rnf(ji,jj) = jk
- ELSE
- nk_rnf(ji,jj) = 1
- ENDIF
- END_2D
- !
- DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth
- h_rnf(ji,jj) = 0._wp
- DO jk = 1, nk_rnf(ji,jj)
- h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm)
- END DO
- END_2D
- !
- IF( nn_rnf_depth_file == 1 ) THEN ! save output nb levels for runoff
- IF(lwp) WRITE(numout,*) ' ==>>> create runoff depht file'
- CALL iom_open ( TRIM( sn_dep_rnf%clname ), inum, ldwrt = .TRUE. )
- CALL iom_rstput( 0, 0, inum, 'rodepth', h_rnf )
- CALL iom_close ( inum )
- ENDIF
- ELSE ! runoffs applied at the surface
- nk_rnf(:,:) = 1
- h_rnf (:,:) = e3t(:,:,1,Kmm)
- ENDIF
- !
- rnf(:,:) = 0._wp ! runoff initialisation
- rnf_tsc(:,:,:) = 0._wp ! runoffs temperature & salinty contents initilisation
- !
- ! ! ========================
- ! ! River mouth vicinity
- ! ! ========================
- !
- IF( ln_rnf_mouth ) THEN ! Specific treatment in vicinity of river mouths :
- ! ! - Increase Kz in surface layers ( rn_hrnf > 0 )
- ! ! - set to zero SSS damping (ln_ssr=T)
- ! ! - mixed upstream-centered (ln_traadv_cen2=T)
- !
- IF( ln_rnf_depth ) CALL ctl_warn( 'sbc_rnf_init: increased mixing turned on but effects may already', &
- & 'be spread through depth by ln_rnf_depth' )
- !
- nkrnf = 0 ! Number of level over which Kz increase
- IF( rn_hrnf > 0._wp ) THEN
- nkrnf = 2
- DO WHILE( nkrnf /= jpkm1 .AND. gdepw_1d(nkrnf+1) < rn_hrnf ) ; nkrnf = nkrnf + 1
- END DO
- IF( ln_sco ) CALL ctl_warn( 'sbc_rnf_init: number of levels over which Kz is increased is computed for zco...' )
- ENDIF
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> Specific treatment used in vicinity of river mouths :'
- IF(lwp) WRITE(numout,*) ' - Increase Kz in surface layers (if rn_hrnf > 0 )'
- IF(lwp) WRITE(numout,*) ' by ', rn_avt_rnf,' m2/s over ', nkrnf, ' w-levels'
- IF(lwp) WRITE(numout,*) ' - set to zero SSS damping (if ln_ssr=T)'
- IF(lwp) WRITE(numout,*) ' - mixed upstream-centered (if ln_traadv_cen2=T)'
- !
- CALL rnf_mouth ! set river mouth mask
- !
- ELSE ! No treatment at river mouths
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' ==>>> No specific treatment at river mouths'
- rnfmsk (:,:) = 0._wp
- rnfmsk_z(:) = 0._wp
- nkrnf = 0
- ENDIF
- !
- END SUBROUTINE sbc_rnf_init
- SUBROUTINE rnf_mouth
- !!----------------------------------------------------------------------
- !! *** ROUTINE rnf_mouth ***
- !!
- !! ** Purpose : define the river mouths mask
- !!
- !! ** Method : read the river mouth mask (=0/1) in the river runoff
- !! climatological file. Defined a given vertical structure.
- !! CAUTION, the vertical structure is hard coded on the
- !! first 5 levels.
- !! This fields can be used to:
- !! - set an upstream advection scheme
- !! (ln_rnf_mouth=T and ln_traadv_cen2=T)
- !! - increase vertical on the top nn_krnf vertical levels
- !! at river runoff input grid point (nn_krnf>=2, see step.F90)
- !! - set to zero SSS restoring flux at river mouth grid points
- !!
- !! ** Action : rnfmsk set to 1 at river runoff input, 0 elsewhere
- !! rnfmsk_z vertical structure
- !!----------------------------------------------------------------------
- INTEGER :: inum ! temporary integers
- CHARACTER(len=140) :: cl_rnfile ! runoff file name
- !!----------------------------------------------------------------------
- !
- IF(lwp) WRITE(numout,*)
- IF(lwp) WRITE(numout,*) ' rnf_mouth : river mouth mask'
- IF(lwp) WRITE(numout,*) ' ~~~~~~~~~ '
- !
- cl_rnfile = TRIM( cn_dir )//TRIM( sn_cnf%clname )
- IF( .NOT. sn_cnf%ln_clim ) THEN ; WRITE(cl_rnfile, '(a,"_y",i4.4)' ) TRIM( cl_rnfile ), nyear ! add year
- IF( sn_cnf%clftyp == 'monthly' ) WRITE(cl_rnfile, '(a,"m" ,i2.2)' ) TRIM( cl_rnfile ), nmonth ! add month
- ENDIF
- !
- ! horizontal mask (read in NetCDF file)
- CALL iom_open ( cl_rnfile, inum ) ! open file
- CALL iom_get ( inum, jpdom_global, sn_cnf%clvar, rnfmsk ) ! read the river mouth array
- CALL iom_close( inum ) ! close file
- !
- IF( l_clo_rnf ) CALL clo_rnf( rnfmsk ) ! closed sea inflow set as river mouth
- !
- rnfmsk_z(:) = 0._wp ! vertical structure
- rnfmsk_z(1) = 1.0
- rnfmsk_z(2) = 1.0 ! **********
- rnfmsk_z(3) = 0.5 ! HARD CODED on the 5 first levels
- rnfmsk_z(4) = 0.25 ! **********
- rnfmsk_z(5) = 0.125
- !
- END SUBROUTINE rnf_mouth
- !!======================================================================
- END MODULE sbcrnf
|