123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436 |
- MODULE icesbc
- !!======================================================================
- !! *** MODULE icesbc ***
- !! Sea-Ice : air-ice sbc fields
- !!=====================================================================
- !! History : 4.0 ! 2017-08 (C. Rousset) Original code
- !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
- !!----------------------------------------------------------------------
- #if defined key_si3
- !!----------------------------------------------------------------------
- !! 'key_si3' : SI3 sea-ice model
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE ice ! sea-ice: variables
- USE sbc_oce ! Surface boundary condition: ocean fields
- USE sbc_ice ! Surface boundary condition: ice fields
- USE usrdef_sbc ! Surface boundary condition: user defined
- USE sbcblk ! Surface boundary condition: bulk
- USE sbccpl ! Surface boundary condition: coupled interface
- USE icealb ! sea-ice: albedo
- !
- USE in_out_manager ! I/O manager
- USE iom ! I/O manager library
- USE lib_mpp ! MPP library
- USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
- USE lbclnk ! lateral boundary conditions (or mpp links)
- USE timing ! Timing
- USE fldread !!GS: needed by agrif
- IMPLICIT NONE
- PRIVATE
- PUBLIC ice_sbc_tau ! called by icestp.F90
- PUBLIC ice_sbc_flx ! called by icestp.F90
- PUBLIC ice_sbc_init ! called by icestp.F90
- !! * Substitutions
- # include "do_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/ICE 4.0 , NEMO Consortium (2018)
- !! $Id: icesbc.F90 15388 2021-10-17 11:33:47Z clem $
- !! Software governed by the CeCILL license (see ./LICENSE)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice )
- !!-------------------------------------------------------------------
- !! *** ROUTINE ice_sbc_tau ***
- !!
- !! ** Purpose : provide surface boundary condition for sea ice (momentum)
- !!
- !! ** Action : It provides the following fields:
- !! utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2]
- !!-------------------------------------------------------------------
- INTEGER , INTENT(in ) :: kt ! ocean time step
- INTEGER , INTENT(in ) :: ksbc ! type of sbc flux
- REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: utau_ice, vtau_ice ! air-ice stress [N/m2]
- !!
- INTEGER :: ji, jj ! dummy loop index
- REAL(wp), DIMENSION(jpi,jpj) :: zutau_ice, zvtau_ice
- !!-------------------------------------------------------------------
- !
- IF( ln_timing ) CALL timing_start('icesbc')
- !
- IF( kt == nit000 .AND. lwp ) THEN
- WRITE(numout,*)
- WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)'
- WRITE(numout,*)'~~~~~~~~~~~~~~~'
- ENDIF
- !
- SELECT CASE( ksbc )
- CASE( jp_usr ) ; CALL usrdef_sbc_ice_tau( kt ) ! user defined formulation
- CASE( jp_blk )
- CALL blk_ice_1( sf(jp_wndi)%fnow(:,:,1), sf(jp_wndj)%fnow(:,:,1), &
- & theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module...
- & sf(jp_slp )%fnow(:,:,1), u_ice, v_ice, tm_su , & ! inputs
- & putaui = utau_ice, pvtaui = vtau_ice ) ! outputs
- ! CASE( jp_abl ) utau_ice & vtau_ice are computed in ablmod
- CASE( jp_purecpl ) ; CALL sbc_cpl_ice_tau( utau_ice , vtau_ice ) ! Coupled formulation
- END SELECT
- !
- IF( ln_mixcpl) THEN ! Case of a mixed Bulk/Coupled formulation
- CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice )
- DO_2D( 0, 0, 0, 0 )
- utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
- vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
- END_2D
- CALL lbc_lnk( 'icesbc', utau_ice, 'U', -1.0_wp, vtau_ice, 'V', -1.0_wp )
- ENDIF
- !
- IF( ln_timing ) CALL timing_stop('icesbc')
- !
- END SUBROUTINE ice_sbc_tau
- SUBROUTINE ice_sbc_flx( kt, ksbc )
- !!-------------------------------------------------------------------
- !! *** ROUTINE ice_sbc_flx ***
- !!
- !! ** Purpose : provide surface boundary condition for sea ice (flux)
- !!
- !! ** Action : It provides the following fields used in sea ice model:
- !! emp_oce , emp_ice = E-P over ocean and sea ice [Kg/m2/s]
- !! sprecip = solid precipitation [Kg/m2/s]
- !! evap_ice = sublimation [Kg/m2/s]
- !! qsr_tot , qns_tot = solar & non solar heat flux (total) [W/m2]
- !! qsr_ice , qns_ice = solar & non solar heat flux over ice [W/m2]
- !! dqns_ice = non solar heat sensistivity [W/m2]
- !! qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2]
- !! + these fields
- !! qsb_ice_bot = sensible heat at the ice bottom [W/m2]
- !! fhld, qlead = heat budget in the leads [W/m2]
- !! + some fields that are not used outside this module:
- !! qla_ice = latent heat flux over ice [W/m2]
- !! dqla_ice = latent heat sensistivity [W/m2]
- !! tprecip = total precipitation [Kg/m2/s]
- !! alb_ice = albedo above sea ice
- !!-------------------------------------------------------------------
- INTEGER, INTENT(in) :: kt ! ocean time step
- INTEGER, INTENT(in) :: ksbc ! flux formulation (user defined, bulk or Pure Coupled)
- !!--------------------------------------------------------------------
- !
- IF( ln_timing ) CALL timing_start('icesbc')
- IF( kt == nit000 .AND. lwp ) THEN
- WRITE(numout,*)
- WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)'
- WRITE(numout,*)'~~~~~~~~~~~~~~~'
- ENDIF
- ! !== ice albedo ==!
- CALL ice_alb( t_su, h_i, h_s, ln_pnd_alb, a_ip_eff, h_ip, cloud_fra, alb_ice )
- !
- SELECT CASE( ksbc ) !== fluxes over sea ice ==!
- !
- CASE( jp_usr ) !--- user defined formulation
- CALL usrdef_sbc_ice_flx( kt, h_s, h_i )
- CASE( jp_blk, jp_abl ) !--- bulk formulation & ABL formulation
- CALL blk_ice_2 ( t_su, h_s, h_i, alb_ice, &
- & theta_air_zt(:,:), q_air_zt(:,:), & ! #LB: known from "sbc_oce" module...
- & sf(jp_slp)%fnow(:,:,1), sf(jp_qlw)%fnow(:,:,1), &
- & sf(jp_prec)%fnow(:,:,1), sf(jp_snow)%fnow(:,:,1) )
- IF( ln_mixcpl ) CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
- IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
- ! ! compute conduction flux and surface temperature (as in Jules surface module)
- IF( ln_cndflx .AND. .NOT.ln_cndemulate ) &
- & CALL blk_ice_qcn ( ln_virtual_itd, t_su, t_bo, h_s, h_i )
- CASE ( jp_purecpl ) !--- coupled formulation
- CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
- IF( nn_flxdist /= -1 ) CALL ice_flx_dist ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
- END SELECT
- ! !== some fluxes at the ice-ocean interface and in the leads
- CALL ice_flx_other
- !
- IF( ln_timing ) CALL timing_stop('icesbc')
- !
- END SUBROUTINE ice_sbc_flx
- SUBROUTINE ice_flx_dist( ptn_ice, palb_ice, pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice, k_flxdist )
- !!-------------------------------------------------------------------
- !! *** ROUTINE ice_flx_dist ***
- !!
- !! ** Purpose : update the ice surface boundary condition by averaging
- !! and/or redistributing fluxes on ice categories
- !!
- !! ** Method : average then redistribute
- !!
- !! ** Action : depends on k_flxdist
- !! = -1 Do nothing (needs N(cat) fluxes)
- !! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice
- !! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice
- !! using T-ice and albedo sensitivity
- !! = 2 Redistribute a single flux over categories
- !!-------------------------------------------------------------------
- INTEGER , INTENT(in ) :: k_flxdist ! redistributor
- REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: ptn_ice ! ice surface temperature
- REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: palb_ice ! ice albedo
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqns_ice ! non solar flux
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pqsr_ice ! net solar flux
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdqn_ice ! non solar flux sensitivity
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pevap_ice ! sublimation
- REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pdevap_ice ! sublimation sensitivity
- !
- INTEGER :: jl ! dummy loop index
- !
- REAL(wp), DIMENSION(jpi,jpj) :: z1_at_i ! inverse of concentration
- !
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qsr_m ! Mean solar heat flux over all categories
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_qns_m ! Mean non solar heat flux over all categories
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_evap_m ! Mean sublimation over all categories
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_dqn_m ! Mean d(qns)/dT over all categories
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: z_devap_m ! Mean d(evap)/dT over all categories
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zalb_m ! Mean albedo over all categories
- REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztem_m ! Mean temperature over all categories
- !!----------------------------------------------------------------------
- !
- WHERE ( at_i (:,:) > 0._wp ) ; z1_at_i(:,:) = 1._wp / at_i (:,:)
- ELSEWHERE ; z1_at_i(:,:) = 0._wp
- END WHERE
- SELECT CASE( k_flxdist ) !== averaged on all ice categories ==!
- !
- CASE( 0 , 1 )
- !
- ALLOCATE( z_qns_m(jpi,jpj), z_qsr_m(jpi,jpj), z_dqn_m(jpi,jpj), z_evap_m(jpi,jpj), z_devap_m(jpi,jpj) )
- !
- z_qns_m (:,:) = SUM( a_i(:,:,:) * pqns_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
- z_qsr_m (:,:) = SUM( a_i(:,:,:) * pqsr_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
- z_dqn_m (:,:) = SUM( a_i(:,:,:) * pdqn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
- z_evap_m (:,:) = SUM( a_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
- z_devap_m(:,:) = SUM( a_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
- DO jl = 1, jpl
- pqns_ice (:,:,jl) = z_qns_m (:,:)
- pqsr_ice (:,:,jl) = z_qsr_m (:,:)
- pdqn_ice (:,:,jl) = z_dqn_m (:,:)
- pevap_ice (:,:,jl) = z_evap_m(:,:)
- pdevap_ice(:,:,jl) = z_devap_m(:,:)
- END DO
- !
- DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m )
- !
- END SELECT
- !
- SELECT CASE( k_flxdist ) !== redistribution on all ice categories ==!
- !
- CASE( 1 , 2 )
- !
- ALLOCATE( zalb_m(jpi,jpj), ztem_m(jpi,jpj) )
- !
- zalb_m(:,:) = SUM( a_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
- ztem_m(:,:) = SUM( a_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
- DO jl = 1, jpl
- pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
- pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
- pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) )
- END DO
- !
- DEALLOCATE( zalb_m, ztem_m )
- !
- END SELECT
- !
- END SUBROUTINE ice_flx_dist
- SUBROUTINE ice_flx_other
- !!-----------------------------------------------------------------------
- !! *** ROUTINE ice_flx_other ***
- !!
- !! ** Purpose : prepare necessary fields for thermo calculations
- !!
- !! ** Inputs : u_ice, v_ice, ssu_m, ssv_m, utau, vtau
- !! frq_m, qsr_oce, qns_oce, qemp_oce, e3t_m, sst_m
- !! ** Outputs : qsb_ice_bot, fhld, qlead
- !!-----------------------------------------------------------------------
- INTEGER :: ji, jj ! dummy loop indices
- REAL(wp) :: zfric_u, zqld, zqfr, zqfr_neg, zqfr_pos, zu_io, zv_io, zu_iom1, zv_iom1
- REAL(wp), PARAMETER :: zfric_umin = 0._wp ! lower bound for the friction velocity (cice value=5.e-04)
- REAL(wp), PARAMETER :: zch = 0.0057_wp ! heat transfer coefficient
- REAL(wp), DIMENSION(jpi,jpj) :: zfric, zvel ! ice-ocean velocity (m/s) and frictional velocity (m2/s2)
- !!-----------------------------------------------------------------------
- !
- ! computation of friction velocity at T points
- IF( ln_icedyn ) THEN
- DO_2D( 0, 0, 0, 0 )
- zu_io = u_ice(ji ,jj ) - ssu_m(ji ,jj )
- zu_iom1 = u_ice(ji-1,jj ) - ssu_m(ji-1,jj )
- zv_io = v_ice(ji ,jj ) - ssv_m(ji ,jj )
- zv_iom1 = v_ice(ji ,jj-1) - ssv_m(ji ,jj-1)
- !
- zfric(ji,jj) = rn_cio * ( 0.5_wp * ( zu_io*zu_io + zu_iom1*zu_iom1 + zv_io*zv_io + zv_iom1*zv_iom1 ) ) * tmask(ji,jj,1)
- zvel (ji,jj) = 0.5_wp * SQRT( ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) * ( u_ice(ji-1,jj ) + u_ice(ji,jj) ) + &
- & ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) * ( v_ice(ji ,jj-1) + v_ice(ji,jj) ) )
- END_2D
- ELSE ! if no ice dynamics => transfer directly the atmospheric stress to the ocean
- DO_2D( 0, 0, 0, 0 )
- zfric(ji,jj) = r1_rho0 * SQRT( 0.5_wp * &
- & ( utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj) &
- & + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1)
- zvel(ji,jj) = 0._wp
- END_2D
- ENDIF
- CALL lbc_lnk( 'icesbc', zfric, 'T', 1.0_wp, zvel, 'T', 1.0_wp )
- !
- !--------------------------------------------------------------------!
- ! Partial computation of forcing for the thermodynamic sea ice model
- !--------------------------------------------------------------------!
- DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! needed for qlead
- rswitch = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice
- !
- ! --- Energy received in the lead from atm-oce exchanges, zqld is defined everywhere (J.m-2) --- !
- zqld = tmask(ji,jj,1) * rDt_ice * &
- & ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) + &
- & ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) )
- ! --- Energy needed to bring ocean surface layer until its freezing, zqfr is defined everywhere (J.m-2) --- !
- ! (mostly<0 but >0 if supercooling)
- zqfr = rho0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) * tmask(ji,jj,1) ! both < 0 (t_bo < sst) and > 0 (t_bo > sst)
- zqfr_neg = MIN( zqfr , 0._wp ) ! only < 0
- zqfr_pos = MAX( zqfr , 0._wp ) ! only > 0
- ! --- Sensible ocean-to-ice heat flux (W/m2) --- !
- ! (mostly>0 but <0 if supercooling)
- zfric_u = MAX( SQRT( zfric(ji,jj) ), zfric_umin )
- qsb_ice_bot(ji,jj) = rswitch * rho0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) )
- ! upper bound for qsb_ice_bot: the heat retrieved from the ocean must be smaller than the heat necessary to reach
- ! the freezing point, so that we do not have SST < T_freeze
- ! This implies: qsb_ice_bot(ji,jj) * at_i(ji,jj) * rtdice <= - zqfr_neg
- ! The following formulation is ok for both normal conditions and supercooling
- qsb_ice_bot(ji,jj) = rswitch * MIN( qsb_ice_bot(ji,jj), - zqfr_neg * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) )
- ! If conditions are always supercooled (such as at the mouth of ice-shelves), then ice grows continuously
- ! ==> stop ice formation by artificially setting up the turbulent fluxes to 0 when volume > 20m (arbitrary)
- IF( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) > 0._wp .AND. vt_i(ji,jj) >= 20._wp ) THEN
- zqfr = 0._wp
- zqfr_pos = 0._wp
- qsb_ice_bot(ji,jj) = 0._wp
- ENDIF
- !
- ! --- Energy Budget of the leads (qlead, J.m-2) --- !
- ! qlead is the energy received from the atm. in the leads.
- ! If warming (zqld >= 0), then the energy in the leads is used to melt ice (bottom melting) => fhld (W/m2)
- ! If cooling (zqld < 0), then the energy in the leads is used to grow ice in open water => qlead (J.m-2)
- IF( ( zqld - zqfr ) < 0._wp .OR. at_i(ji,jj) < epsi10 ) THEN
- fhld (ji,jj) = 0._wp
- ! upper bound for qlead: qlead should be equal to zqld
- ! but before using this heat for ice formation, we suppose that the ocean cools down till the freezing point.
- ! The energy for this cooling down is zqfr and freezing point is reached if zqfr = zqld
- ! so the max heat that can be pulled out of the ocean is zqld - zqfr
- ! The following formulation is ok for both normal conditions and supercooling
- qlead(ji,jj) = MIN( 0._wp , zqld - zqfr )
- ELSE
- ! upper bound for fhld: fhld should be equal to zqld
- ! but we have to make sure that this heat will not make the sst drop below the freezing point
- ! so the max heat that can be pulled out of the ocean is zqld - zqfr_pos
- ! The following formulation is ok for both normal conditions and supercooling
- fhld (ji,jj) = rswitch * MAX( 0._wp, ( zqld - zqfr_pos ) * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) ) ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90
- qlead(ji,jj) = 0._wp
- ENDIF
- !
- ! If ice is landfast and ice concentration reaches its max
- ! => stop ice formation in open water
- ! ELIC change
- ! - this change prevents more efficiently the formation of ice in open water for landfast ice
- ! - this helps avoiding large ice accumulations in small embayments along the Antarctic coast
- ! - this was recommended by Clement Rousset in an email to Noe Pirlet
- ! IF( zvel(ji,jj) <= 5.e-04_wp .AND. at_i(ji,jj) >= rn_amax_2d(ji,jj)-epsi06 ) qlead(ji,jj) = 0._wp
- IF( zvel(ji,jj) <= 5.e-04_wp .AND. at_i(ji,jj) >= rn_amax_2d(ji,jj)-0.01_wp ) qlead(ji,jj) = 0._wp
- ! end ELIC change
- !
- ! If the grid cell is almost fully covered by ice (no leads)
- ! => stop ice formation in open water
- IF( at_i(ji,jj) >= (1._wp - epsi10) ) qlead(ji,jj) = 0._wp
- !
- ! If ln_leadhfx is false
- ! => do not use energy of the leads to melt sea-ice
- IF( .NOT.ln_leadhfx ) fhld(ji,jj) = 0._wp
- !
- END_2D
- ! In case we bypass open-water ice formation
- IF( .NOT. ln_icedO ) qlead(:,:) = 0._wp
- ! In case we bypass growing/melting from top and bottom
- IF( .NOT. ln_icedH ) THEN
- qsb_ice_bot(:,:) = 0._wp
- fhld (:,:) = 0._wp
- ENDIF
-
- END SUBROUTINE ice_flx_other
-
-
- SUBROUTINE ice_sbc_init
- !!-------------------------------------------------------------------
- !! *** ROUTINE ice_sbc_init ***
- !!
- !! ** Purpose : Physical constants and parameters linked to the ice dynamics
- !!
- !! ** Method : Read the namsbc namelist and check the ice-dynamic
- !! parameter values called at the first timestep (nit000)
- !!
- !! ** input : Namelist namsbc
- !!-------------------------------------------------------------------
- INTEGER :: ios, ioptio ! Local integer
- !!
- NAMELIST/namsbc/ rn_cio, nn_snwfra, rn_snwblow, nn_flxdist, ln_cndflx, ln_cndemulate, nn_qtrice
- !!-------------------------------------------------------------------
- !
- READ ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc in reference namelist' )
- READ ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 )
- 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc in configuration namelist' )
- IF(lwm) WRITE( numoni, namsbc )
- !
- IF(lwp) THEN ! control print
- WRITE(numout,*)
- WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics '
- WRITE(numout,*) '~~~~~~~~~~~~~~~~'
- WRITE(numout,*) ' Namelist namsbc:'
- WRITE(numout,*) ' drag coefficient for oceanic stress rn_cio = ', rn_cio
- WRITE(numout,*) ' fraction of ice covered by snow (options 0,1,2) nn_snwfra = ', nn_snwfra
- WRITE(numout,*) ' coefficient for ice-lead partition of snowfall rn_snwblow = ', rn_snwblow
- WRITE(numout,*) ' Multicategory heat flux formulation nn_flxdist = ', nn_flxdist
- WRITE(numout,*) ' Use conduction flux as surface condition ln_cndflx = ', ln_cndflx
- WRITE(numout,*) ' emulate conduction flux ln_cndemulate = ', ln_cndemulate
- WRITE(numout,*) ' solar flux transmitted thru the surface scattering layer nn_qtrice = ', nn_qtrice
- WRITE(numout,*) ' = 0 Grenfell and Maykut 1977'
- WRITE(numout,*) ' = 1 Lebrun 2019'
- ENDIF
- !
- IF(lwp) WRITE(numout,*)
- SELECT CASE( nn_flxdist ) ! SI3 Multi-category heat flux formulation
- CASE( -1 )
- IF(lwp) WRITE(numout,*) ' SI3: use per-category fluxes (nn_flxdist = -1) '
- CASE( 0 )
- IF(lwp) WRITE(numout,*) ' SI3: use average per-category fluxes (nn_flxdist = 0) '
- CASE( 1 )
- IF(lwp) WRITE(numout,*) ' SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) '
- IF( ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' )
- CASE( 2 )
- IF(lwp) WRITE(numout,*) ' SI3: Redistribute a single flux over categories (nn_flxdist = 2) '
- IF( .NOT. ln_cpl ) CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' )
- CASE DEFAULT
- CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' )
- END SELECT
- !
- END SUBROUTINE ice_sbc_init
- #else
- !!----------------------------------------------------------------------
- !! Default option : Empty module NO SI3 sea-ice model
- !!----------------------------------------------------------------------
- #endif
- !!======================================================================
- END MODULE icesbc
|