sbcrnf.F90 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. MODULE sbcrnf
  2. !!======================================================================
  3. !! *** MODULE sbcrnf ***
  4. !! Ocean forcing: river runoff
  5. !!=====================================================================
  6. !! History : OPA ! 2000-11 (R. Hordoir, E. Durand) NetCDF FORMAT
  7. !! NEMO 1.0 ! 2002-09 (G. Madec) F90: Free form and module
  8. !! 3.0 ! 2006-07 (G. Madec) Surface module
  9. !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put
  10. !! 3.3 ! 2010-10 (R. Furner, G. Madec) runoff distributed over ocean levels
  11. !!----------------------------------------------------------------------
  12. !!----------------------------------------------------------------------
  13. !! sbc_rnf : monthly runoffs read in a NetCDF file
  14. !! sbc_rnf_init : runoffs initialisation
  15. !! rnf_mouth : set river mouth mask
  16. !!----------------------------------------------------------------------
  17. USE dom_oce ! ocean space and time domain
  18. USE phycst ! physical constants
  19. USE sbc_oce ! surface boundary condition variables
  20. USE eosbn2 ! Equation Of State
  21. USE closea, ONLY: l_clo_rnf, clo_rnf ! closed seas
  22. !
  23. USE in_out_manager ! I/O manager
  24. USE fldread ! read input field at current time step
  25. USE iom ! I/O module
  26. USE lib_mpp ! MPP library
  27. IMPLICIT NONE
  28. PRIVATE
  29. PUBLIC sbc_rnf ! called in sbcmod module
  30. PUBLIC sbc_rnf_div ! called in divhor module
  31. PUBLIC sbc_rnf_alloc ! called in sbcmod module
  32. PUBLIC sbc_rnf_init ! called in sbcmod module
  33. ! !!* namsbc_rnf namelist *
  34. CHARACTER(len=100) :: cn_dir !: Root directory for location of rnf files
  35. LOGICAL , PUBLIC :: ln_rnf_depth !: depth river runoffs attribute specified in a file
  36. LOGICAL :: ln_rnf_depth_ini !: depth river runoffs computed at the initialisation
  37. REAL(wp) :: rn_rnf_max !: maximum value of the runoff climatologie (ln_rnf_depth_ini =T)
  38. REAL(wp) :: rn_dep_max !: depth over which runoffs is spread (ln_rnf_depth_ini =T)
  39. INTEGER :: nn_rnf_depth_file !: create (=1) a runoff depth file or not (=0)
  40. LOGICAL , PUBLIC :: ln_rnf_icb !: iceberg flux is specified in a file
  41. LOGICAL :: ln_rnf_tem !: temperature river runoffs attribute specified in a file
  42. LOGICAL , PUBLIC :: ln_rnf_sal !: salinity river runoffs attribute specified in a file
  43. TYPE(FLD_N) , PUBLIC :: sn_rnf !: information about the runoff file to be read
  44. TYPE(FLD_N) :: sn_cnf !: information about the runoff mouth file to be read
  45. TYPE(FLD_N) :: sn_i_rnf !: information about the iceberg flux file to be read
  46. TYPE(FLD_N) :: sn_s_rnf !: information about the salinities of runoff file to be read
  47. TYPE(FLD_N) :: sn_t_rnf !: information about the temperatures of runoff file to be read
  48. TYPE(FLD_N) :: sn_dep_rnf !: information about the depth which river inflow affects
  49. LOGICAL , PUBLIC :: ln_rnf_mouth !: specific treatment in mouths vicinity
  50. REAL(wp) :: rn_hrnf !: runoffs, depth over which enhanced vertical mixing is used
  51. REAL(wp) , PUBLIC :: rn_avt_rnf !: runoffs, value of the additional vertical mixing coef. [m2/s]
  52. REAL(wp) , PUBLIC :: rn_rfact !: multiplicative factor for runoff
  53. LOGICAL , PUBLIC :: l_rnfcpl = .false. !: runoffs recieved from oasis
  54. INTEGER , PUBLIC :: nkrnf = 0 !: nb of levels over which Kz is increased at river mouths
  55. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnfmsk !: river mouth mask (hori.)
  56. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: rnfmsk_z !: river mouth mask (vert.)
  57. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: h_rnf !: depth of runoff in m
  58. INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nk_rnf !: depth of runoff in model levels
  59. REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: rnf_tsc_b, rnf_tsc !: before and now T & S runoff contents [K.m/s & PSU.m/s]
  60. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnf ! structure: river runoff (file information, fields read)
  61. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_i_rnf ! structure: iceberg flux (file information, fields read)
  62. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_s_rnf ! structure: river runoff salinity (file information, fields read)
  63. TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_t_rnf ! structure: river runoff temperature (file information, fields read)
  64. #if defined key_drakkar
  65. INTEGER :: nn_rnf_freq !: number of runoff data set
  66. TYPE(FLD_N), DIMENSION(5) :: sn_rnf2 !: information about the extra runoff file to be read
  67. TYPE(FLD_N), DIMENSION(6) :: slf_rnf !: information about all the runoff in namelist
  68. #endif
  69. !! * Substitutions
  70. # include "do_loop_substitute.h90"
  71. # include "domzgr_substitute.h90"
  72. !!----------------------------------------------------------------------
  73. !! NEMO/OCE 4.0 , NEMO Consortium (2018)
  74. !! $Id: sbcrnf.F90 15190 2021-08-13 12:52:50Z gsamson $
  75. !! Software governed by the CeCILL license (see ./LICENSE)
  76. !!----------------------------------------------------------------------
  77. CONTAINS
  78. INTEGER FUNCTION sbc_rnf_alloc()
  79. !!----------------------------------------------------------------------
  80. !! *** ROUTINE sbc_rnf_alloc ***
  81. !!----------------------------------------------------------------------
  82. ALLOCATE( rnfmsk(jpi,jpj) , rnfmsk_z(jpk) , &
  83. & h_rnf (jpi,jpj) , nk_rnf (jpi,jpj) , &
  84. & rnf_tsc_b(jpi,jpj,jpts) , rnf_tsc (jpi,jpj,jpts) , STAT=sbc_rnf_alloc )
  85. !
  86. CALL mpp_sum ( 'sbcrnf', sbc_rnf_alloc )
  87. IF( sbc_rnf_alloc > 0 ) CALL ctl_warn('sbc_rnf_alloc: allocation of arrays failed')
  88. END FUNCTION sbc_rnf_alloc
  89. SUBROUTINE sbc_rnf( kt )
  90. !!----------------------------------------------------------------------
  91. !! *** ROUTINE sbc_rnf ***
  92. !!
  93. !! ** Purpose : Introduce a climatological run off forcing
  94. !!
  95. !! ** Method : Set each river mouth with a monthly climatology
  96. !! provided from different data.
  97. !! CAUTION : upward water flux, runoff forced to be < 0
  98. !!
  99. !! ** Action : runoff updated runoff field at time-step kt
  100. !!----------------------------------------------------------------------
  101. INTEGER, INTENT(in) :: kt ! ocean time step
  102. !
  103. INTEGER :: ji, jj ! dummy loop indices
  104. INTEGER :: z_err = 0 ! dummy integer for error handling
  105. !!----------------------------------------------------------------------
  106. REAL(wp), DIMENSION(jpi,jpj) :: ztfrz ! freezing point used for temperature correction
  107. !
  108. !
  109. ! !-------------------!
  110. ! ! Update runoff !
  111. ! !-------------------!
  112. !
  113. !
  114. IF( .NOT. l_rnfcpl ) THEN
  115. CALL fld_read ( kt, nn_fsbc, sf_rnf ) ! Read Runoffs data and provide it at kt ( runoffs + iceberg )
  116. IF( ln_rnf_icb ) CALL fld_read ( kt, nn_fsbc, sf_i_rnf ) ! idem for iceberg flux if required
  117. ENDIF
  118. IF( ln_rnf_tem ) CALL fld_read ( kt, nn_fsbc, sf_t_rnf ) ! idem for runoffs temperature if required
  119. IF( ln_rnf_sal ) CALL fld_read ( kt, nn_fsbc, sf_s_rnf ) ! idem for runoffs salinity if required
  120. !
  121. IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN
  122. !
  123. IF( .NOT. l_rnfcpl ) THEN
  124. #if defined key_drakkar
  125. rnf(:,:) = 0._wp
  126. DO ji = 1, nn_rnf_freq
  127. rnf(:,:) = rnf(:,:) + sf_rnf(ji)%fnow(:,:,1) !
  128. ENDDO
  129. rnf(:,:) = rn_rfact * rnf(:,:) * tmask(:,:,1) ! updated runoff value at time step kt
  130. #else
  131. rnf(:,:) = rn_rfact * ( sf_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt
  132. #endif
  133. IF( ln_rnf_icb ) THEN
  134. fwficb(:,:) = rn_rfact * ( sf_i_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt
  135. rnf(:,:) = rnf(:,:) + fwficb(:,:)
  136. qns(:,:) = qns(:,:) - fwficb(:,:) * rLfus
  137. !!qns_tot(:,:) = qns_tot(:,:) - fwficb(:,:) * rLfus
  138. !!qns_oce(:,:) = qns_oce(:,:) - fwficb(:,:) * rLfus
  139. CALL iom_put( 'iceberg_cea' , fwficb(:,:) ) ! output iceberg flux
  140. CALL iom_put( 'hflx_icb_cea' , -fwficb(:,:) * rLfus ) ! output Heat Flux into Sea Water due to Iceberg Thermodynamics -->
  141. ENDIF
  142. ENDIF
  143. !
  144. ! ! set temperature & salinity content of runoffs
  145. IF( ln_rnf_tem ) THEN ! use runoffs temperature data
  146. rnf_tsc(:,:,jp_tem) = ( sf_t_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0
  147. CALL eos_fzp( sss_m(:,:), ztfrz(:,:) )
  148. WHERE( sf_t_rnf(1)%fnow(:,:,1) == -999._wp ) ! if missing data value use SST as runoffs temperature
  149. rnf_tsc(:,:,jp_tem) = sst_m(:,:) * rnf(:,:) * r1_rho0
  150. END WHERE
  151. ELSE ! use SST as runoffs temperature
  152. !CEOD River is fresh water so must at least be 0 unless we consider ice
  153. rnf_tsc(:,:,jp_tem) = MAX( sst_m(:,:), 0.0_wp ) * rnf(:,:) * r1_rho0
  154. ENDIF
  155. ! ! use runoffs salinity data
  156. IF( ln_rnf_sal ) rnf_tsc(:,:,jp_sal) = ( sf_s_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0
  157. ! ! else use S=0 for runoffs (done one for all in the init)
  158. CALL iom_put( 'runoffs' , rnf(:,:) ) ! output runoff mass flux
  159. IF( iom_use('hflx_rnf_cea') ) CALL iom_put( 'hflx_rnf_cea', rnf_tsc(:,:,jp_tem) * rho0 * rcp ) ! output runoff sensible heat (W/m2)
  160. IF( iom_use('sflx_rnf_cea') ) CALL iom_put( 'sflx_rnf_cea', rnf_tsc(:,:,jp_sal) * rho0 ) ! output runoff salt flux (g/m2/s)
  161. ENDIF
  162. !
  163. ! ! ---------------------------------------- !
  164. IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
  165. ! ! ---------------------------------------- !
  166. IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN !* Restart: read in restart file
  167. IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields red in the restart file', lrxios
  168. CALL iom_get( numror, jpdom_auto, 'rnf_b' , rnf_b ) ! before runoff
  169. CALL iom_get( numror, jpdom_auto, 'rnf_hc_b', rnf_tsc_b(:,:,jp_tem) ) ! before heat content of runoff
  170. CALL iom_get( numror, jpdom_auto, 'rnf_sc_b', rnf_tsc_b(:,:,jp_sal) ) ! before salinity content of runoff
  171. ELSE !* no restart: set from nit000 values
  172. IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields set to nit000'
  173. rnf_b (:,: ) = rnf (:,: )
  174. rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:)
  175. ENDIF
  176. ENDIF
  177. ! ! ---------------------------------------- !
  178. IF( lrst_oce ) THEN ! Write in the ocean restart file !
  179. ! ! ---------------------------------------- !
  180. IF(lwp) WRITE(numout,*)
  181. IF(lwp) WRITE(numout,*) 'sbcrnf : runoff forcing fields written in ocean restart file ', &
  182. & 'at it= ', kt,' date= ', ndastp
  183. IF(lwp) WRITE(numout,*) '~~~~'
  184. CALL iom_rstput( kt, nitrst, numrow, 'rnf_b' , rnf )
  185. CALL iom_rstput( kt, nitrst, numrow, 'rnf_hc_b', rnf_tsc(:,:,jp_tem) )
  186. CALL iom_rstput( kt, nitrst, numrow, 'rnf_sc_b', rnf_tsc(:,:,jp_sal) )
  187. ENDIF
  188. !
  189. END SUBROUTINE sbc_rnf
  190. SUBROUTINE sbc_rnf_div( phdivn, Kmm )
  191. !!----------------------------------------------------------------------
  192. !! *** ROUTINE sbc_rnf ***
  193. !!
  194. !! ** Purpose : update the horizontal divergence with the runoff inflow
  195. !!
  196. !! ** Method :
  197. !! CAUTION : rnf is positive (inflow) decreasing the
  198. !! divergence and expressed in m/s
  199. !!
  200. !! ** Action : phdivn decreased by the runoff inflow
  201. !!----------------------------------------------------------------------
  202. INTEGER , INTENT(in ) :: Kmm ! ocean time level index
  203. REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence
  204. !!
  205. INTEGER :: ji, jj, jk ! dummy loop indices
  206. REAL(wp) :: zfact ! local scalar
  207. !!----------------------------------------------------------------------
  208. !
  209. zfact = 0.5_wp
  210. !
  211. IF( ln_rnf_depth .OR. ln_rnf_depth_ini ) THEN !== runoff distributed over several levels ==!
  212. IF( ln_linssh ) THEN !* constant volume case : just apply the runoff input flow
  213. DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
  214. DO jk = 1, nk_rnf(ji,jj)
  215. phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj)
  216. END DO
  217. END_2D
  218. ELSE !* variable volume case
  219. DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls ) ! update the depth over which runoffs are distributed
  220. h_rnf(ji,jj) = 0._wp
  221. DO jk = 1, nk_rnf(ji,jj) ! recalculates h_rnf to be the depth in metres
  222. h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm) ! to the bottom of the relevant grid box
  223. END DO
  224. END_2D
  225. DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! apply the runoff input flow
  226. DO jk = 1, nk_rnf(ji,jj)
  227. phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj)
  228. END DO
  229. END_2D
  230. ENDIF
  231. ELSE !== runoff put only at the surface ==!
  232. DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
  233. h_rnf (ji,jj) = e3t(ji,jj,1,Kmm) ! update h_rnf to be depth of top box
  234. END_2D
  235. DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
  236. phdivn(ji,jj,1) = phdivn(ji,jj,1) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / e3t(ji,jj,1,Kmm)
  237. END_2D
  238. ENDIF
  239. !
  240. END SUBROUTINE sbc_rnf_div
  241. SUBROUTINE sbc_rnf_init( Kmm )
  242. !!----------------------------------------------------------------------
  243. !! *** ROUTINE sbc_rnf_init ***
  244. !!
  245. !! ** Purpose : Initialisation of the runoffs if (ln_rnf=T)
  246. !!
  247. !! ** Method : - read the runoff namsbc_rnf namelist
  248. !!
  249. !! ** Action : - read parameters
  250. !!----------------------------------------------------------------------
  251. INTEGER, INTENT(in) :: Kmm ! ocean time level index
  252. CHARACTER(len=32) :: rn_dep_file ! runoff file name
  253. INTEGER :: ji, jj, jk, jm ! dummy loop indices
  254. INTEGER :: ierror, inum ! temporary integer
  255. INTEGER :: ios ! Local integer output status for namelist read
  256. INTEGER :: nbrec ! temporary integer
  257. REAL(wp) :: zacoef
  258. REAL(wp), DIMENSION(jpi,jpj,2) :: zrnfcl
  259. !!
  260. NAMELIST/namsbc_rnf/ cn_dir , ln_rnf_depth, ln_rnf_tem, ln_rnf_sal, ln_rnf_icb, &
  261. & sn_rnf, sn_cnf , sn_i_rnf, sn_s_rnf , sn_t_rnf , sn_dep_rnf, &
  262. & ln_rnf_mouth , rn_hrnf , rn_avt_rnf, rn_rfact, &
  263. & ln_rnf_depth_ini , rn_dep_max , rn_rnf_max, nn_rnf_depth_file
  264. #if defined key_drakkar
  265. INTEGER :: ierror2
  266. NAMELIST/namsbc_rnf_drk/ nn_rnf_freq, sn_rnf2
  267. #endif
  268. !!----------------------------------------------------------------------
  269. !
  270. ! !== allocate runoff arrays
  271. IF( sbc_rnf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_rnf_alloc : unable to allocate arrays' )
  272. !
  273. IF( .NOT. ln_rnf ) THEN ! no specific treatment in vicinity of river mouths
  274. ln_rnf_mouth = .FALSE. ! default definition needed for example by sbc_ssr or by tra_adv_muscl
  275. nkrnf = 0
  276. rnf (:,:) = 0.0_wp
  277. rnf_b (:,:) = 0.0_wp
  278. rnfmsk (:,:) = 0.0_wp
  279. rnfmsk_z(:) = 0.0_wp
  280. RETURN
  281. ENDIF
  282. !
  283. ! ! ============
  284. ! ! Namelist
  285. ! ! ============
  286. !
  287. READ ( numnam_ref, namsbc_rnf, IOSTAT = ios, ERR = 901)
  288. 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in reference namelist' )
  289. READ ( numnam_cfg, namsbc_rnf, IOSTAT = ios, ERR = 902 )
  290. 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in configuration namelist' )
  291. IF(lwm) WRITE ( numond, namsbc_rnf )
  292. #if defined key_drakkar
  293. READ ( numnam_ref, namsbc_rnf_drk, IOSTAT = ios, ERR = 903)
  294. 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf_drk in reference namelist' )
  295. READ ( numnam_cfg, namsbc_rnf_drk, IOSTAT = ios, ERR = 904 )
  296. 904 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_rnf_drk in configuration namelist' )
  297. IF(lwm) WRITE ( numond, namsbc_rnf_drk )
  298. #endif
  299. !
  300. ! ! Control print
  301. IF(lwp) THEN
  302. WRITE(numout,*)
  303. WRITE(numout,*) 'sbc_rnf_init : runoff '
  304. WRITE(numout,*) '~~~~~~~~~~~~ '
  305. WRITE(numout,*) ' Namelist namsbc_rnf'
  306. WRITE(numout,*) ' specific river mouths treatment ln_rnf_mouth = ', ln_rnf_mouth
  307. WRITE(numout,*) ' river mouth additional Kz rn_avt_rnf = ', rn_avt_rnf
  308. WRITE(numout,*) ' depth of river mouth additional mixing rn_hrnf = ', rn_hrnf
  309. WRITE(numout,*) ' multiplicative factor for runoff rn_rfact = ', rn_rfact
  310. ENDIF
  311. ! ! ==================
  312. ! ! Type of runoff
  313. ! ! ==================
  314. !
  315. IF( .NOT. l_rnfcpl ) THEN
  316. #if defined key_drakkar
  317. IF(lwp) WRITE(numout,*)
  318. IF(lwp) WRITE(numout,*) ' ==>>> runoffs inflow read in ',nn_rnf_freq,' file(s)'
  319. ALLOCATE( sf_rnf(nn_rnf_freq), STAT=ierror ) ! Create sf_rnf structure (runoff inflow)
  320. DO ji = 1, nn_rnf_freq
  321. ALLOCATE ( sf_rnf(ji)%fnow(jpi,jpj,1) , STAT=ierror2) ; ierror = ierror + ierror2
  322. ALLOCATE ( sf_rnf(ji)%fdta(jpi,jpj,1,2), STAT=ierror2) ; ierror = ierror + ierror2
  323. ENDDO
  324. IF( ierror > 0 ) THEN
  325. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_rnf structure' ) ; RETURN
  326. ENDIF
  327. slf_rnf(1) = sn_rnf
  328. DO ji = 2, nn_rnf_freq
  329. slf_rnf(ji) = sn_rnf2(ji-1)
  330. ENDDO
  331. CALL fld_fill( sf_rnf, slf_rnf(1:nn_rnf_freq), cn_dir, 'sbc_rnf_init', 'read runoffs data', 'namsbc_rnf', no_print )
  332. #else
  333. ALLOCATE( sf_rnf(1), STAT=ierror ) ! Create sf_rnf structure (runoff inflow)
  334. IF(lwp) WRITE(numout,*)
  335. IF(lwp) WRITE(numout,*) ' ==>>> runoffs inflow read in a file'
  336. IF( ierror > 0 ) THEN
  337. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_rnf structure' ) ; RETURN
  338. ENDIF
  339. ALLOCATE( sf_rnf(1)%fnow(jpi,jpj,1) )
  340. IF( sn_rnf%ln_tint ) ALLOCATE( sf_rnf(1)%fdta(jpi,jpj,1,2) )
  341. CALL fld_fill( sf_rnf, (/ sn_rnf /), cn_dir, 'sbc_rnf_init', 'read runoffs data', 'namsbc_rnf', no_print )
  342. #endif
  343. !
  344. IF( ln_rnf_icb ) THEN ! Create (if required) sf_i_rnf structure
  345. IF(lwp) WRITE(numout,*)
  346. IF(lwp) WRITE(numout,*) ' iceberg flux read in a file'
  347. ALLOCATE( sf_i_rnf(1), STAT=ierror )
  348. IF( ierror > 0 ) THEN
  349. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_i_rnf structure' ) ; RETURN
  350. ENDIF
  351. ALLOCATE( sf_i_rnf(1)%fnow(jpi,jpj,1) )
  352. IF( sn_i_rnf%ln_tint ) ALLOCATE( sf_i_rnf(1)%fdta(jpi,jpj,1,2) )
  353. CALL fld_fill (sf_i_rnf, (/ sn_i_rnf /), cn_dir, 'sbc_rnf_init', 'read iceberg flux data', 'namsbc_rnf' )
  354. ELSE
  355. fwficb(:,:) = 0._wp
  356. ENDIF
  357. ENDIF
  358. !
  359. IF( ln_rnf_tem ) THEN ! Create (if required) sf_t_rnf structure
  360. IF(lwp) WRITE(numout,*)
  361. IF(lwp) WRITE(numout,*) ' ==>>> runoffs temperatures read in a file'
  362. ALLOCATE( sf_t_rnf(1), STAT=ierror )
  363. IF( ierror > 0 ) THEN
  364. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_t_rnf structure' ) ; RETURN
  365. ENDIF
  366. ALLOCATE( sf_t_rnf(1)%fnow(jpi,jpj,1) )
  367. IF( sn_t_rnf%ln_tint ) ALLOCATE( sf_t_rnf(1)%fdta(jpi,jpj,1,2) )
  368. CALL fld_fill (sf_t_rnf, (/ sn_t_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff temperature data', 'namsbc_rnf', no_print )
  369. ENDIF
  370. !
  371. IF( ln_rnf_sal ) THEN ! Create (if required) sf_s_rnf and sf_t_rnf structures
  372. IF(lwp) WRITE(numout,*)
  373. IF(lwp) WRITE(numout,*) ' ==>>> runoffs salinities read in a file'
  374. ALLOCATE( sf_s_rnf(1), STAT=ierror )
  375. IF( ierror > 0 ) THEN
  376. CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_s_rnf structure' ) ; RETURN
  377. ENDIF
  378. ALLOCATE( sf_s_rnf(1)%fnow(jpi,jpj,1) )
  379. IF( sn_s_rnf%ln_tint ) ALLOCATE( sf_s_rnf(1)%fdta(jpi,jpj,1,2) )
  380. CALL fld_fill (sf_s_rnf, (/ sn_s_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff salinity data', 'namsbc_rnf', no_print )
  381. ENDIF
  382. !
  383. IF( ln_rnf_depth ) THEN ! depth of runoffs set from a file
  384. IF(lwp) WRITE(numout,*)
  385. IF(lwp) WRITE(numout,*) ' ==>>> runoffs depth read in a file'
  386. rn_dep_file = TRIM( cn_dir )//TRIM( sn_dep_rnf%clname )
  387. IF( .NOT. sn_dep_rnf%ln_clim ) THEN ; WRITE(rn_dep_file, '(a,"_y",i4)' ) TRIM( rn_dep_file ), nyear ! add year
  388. IF( sn_dep_rnf%clftyp == 'monthly' ) WRITE(rn_dep_file, '(a,"m",i2)' ) TRIM( rn_dep_file ), nmonth ! add month
  389. ENDIF
  390. CALL iom_open ( rn_dep_file, inum ) ! open file
  391. CALL iom_get ( inum, jpdom_global, sn_dep_rnf%clvar, h_rnf, kfill = jpfillcopy ) ! read the river mouth. no 0 on halos!
  392. CALL iom_close( inum ) ! close file
  393. !
  394. nk_rnf(:,:) = 0 ! set the number of level over which river runoffs are applied
  395. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
  396. IF( h_rnf(ji,jj) > 0._wp ) THEN
  397. jk = 2
  398. DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1
  399. END DO
  400. nk_rnf(ji,jj) = jk
  401. ELSEIF( h_rnf(ji,jj) == -1._wp ) THEN ; nk_rnf(ji,jj) = 1
  402. ELSEIF( h_rnf(ji,jj) == -999._wp ) THEN ; nk_rnf(ji,jj) = mbkt(ji,jj)
  403. ELSE
  404. CALL ctl_stop( 'sbc_rnf_init: runoff depth not positive, and not -999 or -1, rnf value in file fort.999' )
  405. WRITE(999,*) 'ji, jj, h_rnf(ji,jj) :', ji, jj, h_rnf(ji,jj)
  406. ENDIF
  407. END_2D
  408. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth
  409. h_rnf(ji,jj) = 0._wp
  410. DO jk = 1, nk_rnf(ji,jj)
  411. h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm)
  412. END DO
  413. END_2D
  414. !
  415. ELSE IF( ln_rnf_depth_ini ) THEN ! runoffs applied at the surface
  416. !
  417. IF(lwp) WRITE(numout,*)
  418. IF(lwp) WRITE(numout,*) ' ==>>> depth of runoff computed once from max value of runoff'
  419. IF(lwp) WRITE(numout,*) ' max value of the runoff climatologie (over global domain) rn_rnf_max = ', rn_rnf_max
  420. IF(lwp) WRITE(numout,*) ' depth over which runoffs is spread rn_dep_max = ', rn_dep_max
  421. IF(lwp) WRITE(numout,*) ' create (=1) a runoff depth file or not (=0) nn_rnf_depth_file = ', nn_rnf_depth_file
  422. CALL iom_open( TRIM( sn_rnf%clname ), inum ) ! open runoff file
  423. nbrec = iom_getszuld( inum )
  424. zrnfcl(:,:,1) = 0._wp ! init the max to 0. in 1
  425. DO jm = 1, nbrec
  426. CALL iom_get( inum, jpdom_global, TRIM( sn_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2
  427. zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1
  428. END DO
  429. CALL iom_close( inum )
  430. !
  431. h_rnf(:,:) = 1.
  432. !
  433. zacoef = rn_dep_max / rn_rnf_max ! coef of linear relation between runoff and its depth (150m for max of runoff)
  434. !
  435. WHERE( zrnfcl(:,:,1) > 0._wp ) h_rnf(:,:) = zacoef * zrnfcl(:,:,1) ! compute depth for all runoffs
  436. !
  437. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! take in account min depth of ocean rn_hmin
  438. IF( zrnfcl(ji,jj,1) > 0._wp ) THEN
  439. jk = mbkt(ji,jj)
  440. h_rnf(ji,jj) = MIN( h_rnf(ji,jj), gdept_0(ji,jj,jk ) )
  441. ENDIF
  442. END_2D
  443. !
  444. nk_rnf(:,:) = 0 ! number of levels on which runoffs are distributed
  445. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
  446. IF( zrnfcl(ji,jj,1) > 0._wp ) THEN
  447. jk = 2
  448. DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1
  449. END DO
  450. nk_rnf(ji,jj) = jk
  451. ELSE
  452. nk_rnf(ji,jj) = 1
  453. ENDIF
  454. END_2D
  455. !
  456. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth
  457. h_rnf(ji,jj) = 0._wp
  458. DO jk = 1, nk_rnf(ji,jj)
  459. h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm)
  460. END DO
  461. END_2D
  462. !
  463. IF( nn_rnf_depth_file == 1 ) THEN ! save output nb levels for runoff
  464. IF(lwp) WRITE(numout,*) ' ==>>> create runoff depht file'
  465. CALL iom_open ( TRIM( sn_dep_rnf%clname ), inum, ldwrt = .TRUE. )
  466. CALL iom_rstput( 0, 0, inum, 'rodepth', h_rnf )
  467. CALL iom_close ( inum )
  468. ENDIF
  469. ELSE ! runoffs applied at the surface
  470. nk_rnf(:,:) = 1
  471. h_rnf (:,:) = e3t(:,:,1,Kmm)
  472. ENDIF
  473. !
  474. rnf(:,:) = 0._wp ! runoff initialisation
  475. rnf_tsc(:,:,:) = 0._wp ! runoffs temperature & salinty contents initilisation
  476. !
  477. ! ! ========================
  478. ! ! River mouth vicinity
  479. ! ! ========================
  480. !
  481. IF( ln_rnf_mouth ) THEN ! Specific treatment in vicinity of river mouths :
  482. ! ! - Increase Kz in surface layers ( rn_hrnf > 0 )
  483. ! ! - set to zero SSS damping (ln_ssr=T)
  484. ! ! - mixed upstream-centered (ln_traadv_cen2=T)
  485. !
  486. IF( ln_rnf_depth ) CALL ctl_warn( 'sbc_rnf_init: increased mixing turned on but effects may already', &
  487. & 'be spread through depth by ln_rnf_depth' )
  488. !
  489. nkrnf = 0 ! Number of level over which Kz increase
  490. IF( rn_hrnf > 0._wp ) THEN
  491. nkrnf = 2
  492. DO WHILE( nkrnf /= jpkm1 .AND. gdepw_1d(nkrnf+1) < rn_hrnf ) ; nkrnf = nkrnf + 1
  493. END DO
  494. IF( ln_sco ) CALL ctl_warn( 'sbc_rnf_init: number of levels over which Kz is increased is computed for zco...' )
  495. ENDIF
  496. IF(lwp) WRITE(numout,*)
  497. IF(lwp) WRITE(numout,*) ' ==>>> Specific treatment used in vicinity of river mouths :'
  498. IF(lwp) WRITE(numout,*) ' - Increase Kz in surface layers (if rn_hrnf > 0 )'
  499. IF(lwp) WRITE(numout,*) ' by ', rn_avt_rnf,' m2/s over ', nkrnf, ' w-levels'
  500. IF(lwp) WRITE(numout,*) ' - set to zero SSS damping (if ln_ssr=T)'
  501. IF(lwp) WRITE(numout,*) ' - mixed upstream-centered (if ln_traadv_cen2=T)'
  502. !
  503. CALL rnf_mouth ! set river mouth mask
  504. !
  505. ELSE ! No treatment at river mouths
  506. IF(lwp) WRITE(numout,*)
  507. IF(lwp) WRITE(numout,*) ' ==>>> No specific treatment at river mouths'
  508. rnfmsk (:,:) = 0._wp
  509. #if defined key_drakkar
  510. ! rnf_msk is read from socoefr even if ln_rnf_mouth = F
  511. ! because it is used in SSS restoring
  512. CALL rnf_mouth ! set river mouth mask
  513. #endif
  514. rnfmsk_z(:) = 0._wp
  515. nkrnf = 0
  516. ENDIF
  517. !
  518. END SUBROUTINE sbc_rnf_init
  519. SUBROUTINE rnf_mouth
  520. !!----------------------------------------------------------------------
  521. !! *** ROUTINE rnf_mouth ***
  522. !!
  523. !! ** Purpose : define the river mouths mask
  524. !!
  525. !! ** Method : read the river mouth mask (=0/1) in the river runoff
  526. !! climatological file. Defined a given vertical structure.
  527. !! CAUTION, the vertical structure is hard coded on the
  528. !! first 5 levels.
  529. !! This fields can be used to:
  530. !! - set an upstream advection scheme
  531. !! (ln_rnf_mouth=T and ln_traadv_cen2=T)
  532. !! - increase vertical on the top nn_krnf vertical levels
  533. !! at river runoff input grid point (nn_krnf>=2, see step.F90)
  534. !! - set to zero SSS restoring flux at river mouth grid points
  535. !!
  536. !! ** Action : rnfmsk set to 1 at river runoff input, 0 elsewhere
  537. !! rnfmsk_z vertical structure
  538. !!----------------------------------------------------------------------
  539. INTEGER :: inum ! temporary integers
  540. CHARACTER(len=140) :: cl_rnfile ! runoff file name
  541. !!----------------------------------------------------------------------
  542. !
  543. IF(lwp) WRITE(numout,*)
  544. IF(lwp) WRITE(numout,*) ' rnf_mouth : river mouth mask'
  545. IF(lwp) WRITE(numout,*) ' ~~~~~~~~~ '
  546. !
  547. cl_rnfile = TRIM( cn_dir )//TRIM( sn_cnf%clname )
  548. IF( .NOT. sn_cnf%ln_clim ) THEN ; WRITE(cl_rnfile, '(a,"_y",i4.4)' ) TRIM( cl_rnfile ), nyear ! add year
  549. IF( sn_cnf%clftyp == 'monthly' ) WRITE(cl_rnfile, '(a,"m" ,i2.2)' ) TRIM( cl_rnfile ), nmonth ! add month
  550. ENDIF
  551. !
  552. ! horizontal mask (read in NetCDF file)
  553. CALL iom_open ( cl_rnfile, inum ) ! open file
  554. CALL iom_get ( inum, jpdom_global, sn_cnf%clvar, rnfmsk ) ! read the river mouth array
  555. CALL iom_close( inum ) ! close file
  556. !
  557. IF( l_clo_rnf ) CALL clo_rnf( rnfmsk ) ! closed sea inflow set as river mouth
  558. !
  559. rnfmsk_z(:) = 0._wp ! vertical structure
  560. rnfmsk_z(1) = 1.0
  561. rnfmsk_z(2) = 1.0 ! **********
  562. rnfmsk_z(3) = 0.5 ! HARD CODED on the 5 first levels
  563. rnfmsk_z(4) = 0.25 ! **********
  564. rnfmsk_z(5) = 0.125
  565. !
  566. END SUBROUTINE rnf_mouth
  567. !!======================================================================
  568. END MODULE sbcrnf