MODULE sbcblk !!====================================================================== !! *** MODULE sbcblk *** !! Ocean forcing: momentum, heat and freshwater flux formulation !! Aerodynamic Bulk Formulas !! SUCCESSOR OF "sbcblk_core" !!===================================================================== !! History : 1.0 ! 2004-08 (U. Schweckendiek) Original CORE code !! 2.0 ! 2005-04 (L. Brodeau, A.M. Treguier) improved CORE bulk and its user interface !! 3.0 ! 2006-06 (G. Madec) sbc rewritting !! - ! 2006-12 (L. Brodeau) Original code for turb_core !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put !! 3.3 ! 2010-10 (S. Masson) add diurnal cycle !! 3.4 ! 2011-11 (C. Harris) Fill arrays required by CICE !! 3.7 ! 2014-06 (L. Brodeau) simplification and optimization of CORE bulk !! 4.0 ! 2016-06 (L. Brodeau) sbcblk_core becomes sbcblk and is not restricted to the CORE algorithm anymore !! ! ==> based on AeroBulk (https://github.com/brodeau/aerobulk/) !! 4.0 ! 2016-10 (G. Madec) introduce a sbc_blk_init routine !! 4.0 ! 2016-10 (M. Vancoppenolle) Introduce conduction flux emulator (M. Vancoppenolle) !! 4.0 ! 2019-03 (F. LemariƩ & G. Samson) add ABL compatibility (ln_abl=TRUE) !! 4.2 ! 2020-12 (L. Brodeau) Introduction of various air-ice bulk parameterizations + improvements !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_blk_init : initialisation of the chosen bulk formulation as ocean surface boundary condition !! sbc_blk : bulk formulation as ocean surface boundary condition !! blk_oce_1 : computes pieces of momentum, heat and freshwater fluxes over ocean for ABL model (ln_abl=TRUE) !! blk_oce_2 : finalizes momentum, heat and freshwater fluxes computation over ocean after the ABL step (ln_abl=TRUE) !! sea-ice case only : !! blk_ice_1 : provide the air-ice stress !! blk_ice_2 : provide the heat and mass fluxes at air-ice interface !! blk_ice_qcn : provide ice surface temperature and snow/ice conduction flux (emulating conduction flux) !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE fldread ! read input fields USE sbc_oce ! Surface boundary condition: ocean fields USE trc_oce ! share SMS/Ocean variables USE cyclone ! Cyclone 10m wind form trac of cyclone centres USE sbcdcy ! surface boundary condition: diurnal cycle USE sbcwave , ONLY : cdn_wave ! wave module USE lib_fortran ! to use key_nosignedzero and glob_sum ! #if defined key_si3 USE sbc_ice ! Surface boundary condition: ice fields #LB? ok to be in 'key_si3' ??? USE ice , ONLY : u_ice, v_ice, jpl, a_i_b, at_i_b, t_su, rn_cnd_s, hfx_err_dif, nn_qtrice USE icevar ! for CALL ice_var_snwblow USE sbcblk_algo_ice_an05 USE sbcblk_algo_ice_lu12 USE sbcblk_algo_ice_lg15 #endif USE sbcblk_algo_ncar ! => turb_ncar : NCAR - (formerly known as CORE, Large & Yeager, 2009) USE sbcblk_algo_coare3p0 ! => turb_coare3p0 : COAREv3.0 (Fairall et al. 2003) USE sbcblk_algo_coare3p6 ! => turb_coare3p6 : COAREv3.6 (Fairall et al. 2018 + Edson et al. 2013) USE sbcblk_algo_ecmwf ! => turb_ecmwf : ECMWF (IFS cycle 45r1) USE sbcblk_algo_andreas ! => turb_andreas : Andreas et al. 2015 ! USE iom ! I/O manager library USE in_out_manager ! I/O manager USE lib_mpp ! distribued memory computing library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE prtctl ! Print control USE sbc_phy ! Catalog of functions for physical/meteorological parameters in the marine boundary layer IMPLICIT NONE PRIVATE PUBLIC sbc_blk_init ! called in sbcmod PUBLIC sbc_blk ! called in sbcmod PUBLIC blk_oce_1 ! called in sbcabl PUBLIC blk_oce_2 ! called in sbcabl #if defined key_si3 PUBLIC blk_ice_1 ! routine called in icesbc PUBLIC blk_ice_2 ! routine called in icesbc PUBLIC blk_ice_qcn ! routine called in icesbc #endif INTEGER , PUBLIC, PARAMETER :: jp_wndi = 1 ! index of 10m wind velocity (i-component) (m/s) at T-point INTEGER , PUBLIC, PARAMETER :: jp_wndj = 2 ! index of 10m wind velocity (j-component) (m/s) at T-point INTEGER , PUBLIC, PARAMETER :: jp_tair = 3 ! index of 10m air temperature (Kelvin) INTEGER , PUBLIC, PARAMETER :: jp_humi = 4 ! index of specific humidity (kg/kg) INTEGER , PUBLIC, PARAMETER :: jp_qsr = 5 ! index of solar heat (W/m2) INTEGER , PUBLIC, PARAMETER :: jp_qlw = 6 ! index of Long wave (W/m2) INTEGER , PUBLIC, PARAMETER :: jp_prec = 7 ! index of total precipitation (rain+snow) (Kg/m2/s) INTEGER , PUBLIC, PARAMETER :: jp_snow = 8 ! index of snow (solid prcipitation) (kg/m2/s) INTEGER , PUBLIC, PARAMETER :: jp_slp = 9 ! index of sea level pressure (Pa) INTEGER , PUBLIC, PARAMETER :: jp_uoatm = 10 ! index of surface current (i-component) ! ! seen by the atmospheric forcing (m/s) at T-point INTEGER , PUBLIC, PARAMETER :: jp_voatm = 11 ! index of surface current (j-component) ! ! seen by the atmospheric forcing (m/s) at T-point INTEGER , PUBLIC, PARAMETER :: jp_cc = 12 ! index of cloud cover (-) range:0-1 INTEGER , PUBLIC, PARAMETER :: jp_hpgi = 13 ! index of ABL geostrophic wind or hpg (i-component) (m/s) at T-point INTEGER , PUBLIC, PARAMETER :: jp_hpgj = 14 ! index of ABL geostrophic wind or hpg (j-component) (m/s) at T-point #if defined key_drakkar LOGICAL :: ln_clim_forcing = .false. ! Logical flag for use of climatological forcing ! ( T= climatological, F=interannual) INTEGER , PUBLIC, PARAMETER :: jp_wmod =15 ! index of wind module (m/s) INTEGER , PUBLIC, PARAMETER :: jp_uw =16 ! index of zonal pseudo stress (m2/s2) INTEGER , PUBLIC, PARAMETER :: jp_vw =17 ! index of meridional pseudo stress (m2/s2) INTEGER , PUBLIC, PARAMETER :: jpfld = 17 ! maximum number of files to read #else INTEGER , PUBLIC, PARAMETER :: jpfld = 14 ! maximum number of files to read #endif ! Warning: keep this structure allocatable for Agrif... TYPE(FLD), PUBLIC, ALLOCATABLE, DIMENSION(:) :: sf ! structure of input atmospheric fields (file informations, fields read) ! !!* Namelist namsbc_blk : bulk parameters LOGICAL :: ln_NCAR ! "NCAR" algorithm (Large and Yeager 2008) LOGICAL :: ln_COARE_3p0 ! "COARE 3.0" algorithm (Fairall et al. 2003) LOGICAL :: ln_COARE_3p6 ! "COARE 3.6" algorithm (Edson et al. 2013) LOGICAL :: ln_ECMWF ! "ECMWF" algorithm (IFS cycle 45r1) LOGICAL :: ln_ANDREAS ! "ANDREAS" algorithm (Andreas et al. 2015) ! !#LB: LOGICAL :: ln_Cx_ice_cst ! use constant air-ice bulk transfer coefficients (value given in namelist's rn_Cd_i, rn_Ce_i & rn_Ch_i) REAL(wp) :: rn_Cd_i, rn_Ce_i, rn_Ch_i ! values for " " LOGICAL :: ln_Cx_ice_AN05 ! air-ice bulk transfer coefficients based on Andreas et al., 2005 LOGICAL :: ln_Cx_ice_LU12 ! air-ice bulk transfer coefficients based on Lupkes et al., 2012 LOGICAL :: ln_Cx_ice_LG15 ! air-ice bulk transfer coefficients based on Lupkes & Gryanik, 2015 !#LB. ! LOGICAL :: ln_crt_fbk ! Add surface current feedback to the wind stress computation (Renault et al. 2020) REAL(wp) :: rn_stau_a ! Alpha and Beta coefficients of Renault et al. 2020, eq. 10: Stau = Alpha * Wnd + Beta REAL(wp) :: rn_stau_b ! ! REAL(wp) :: rn_pfac ! multiplication factor for precipitation REAL(wp), PUBLIC :: rn_efac ! multiplication factor for evaporation REAL(wp) :: rn_zqt ! z(q,t) : height of humidity and temperature measurements REAL(wp) :: rn_zu ! z(u) : height of wind measurements ! INTEGER :: nn_iter_algo ! Number of iterations in bulk param. algo ("stable ABL + weak wind" requires more) REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: theta_zu, q_zu ! air temp. and spec. hum. at wind speed height (L15 bulk scheme) #if defined key_si3 REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: Cd_ice , Ch_ice , Ce_ice !#LB transfert coefficients over ice REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: theta_zu_i, q_zu_i !#LB fixme ! air temp. and spec. hum. over ice at wind speed height (L15 bulk scheme) #endif LOGICAL :: ln_skin_cs ! use the cool-skin (only available in ECMWF and COARE algorithms) !LB LOGICAL :: ln_skin_wl ! use the warm-layer parameterization (only available in ECMWF and COARE algorithms) !LB LOGICAL :: ln_humi_sph ! humidity read in files ("sn_humi") is specific humidity [kg/kg] if .true. !LB LOGICAL :: ln_humi_dpt ! humidity read in files ("sn_humi") is dew-point temperature [K] if .true. !LB LOGICAL :: ln_humi_rlh ! humidity read in files ("sn_humi") is relative humidity [%] if .true. !LB LOGICAL :: ln_tair_pot ! temperature read in files ("sn_tair") is already potential temperature (not absolute) ! INTEGER :: nhumi ! choice of the bulk algorithm ! ! associated indices: INTEGER, PARAMETER :: np_humi_sph = 1 INTEGER, PARAMETER :: np_humi_dpt = 2 INTEGER, PARAMETER :: np_humi_rlh = 3 INTEGER :: nblk ! choice of the bulk algorithm ! ! associated indices: INTEGER, PARAMETER :: np_NCAR = 1 ! "NCAR" algorithm (Large and Yeager 2008) INTEGER, PARAMETER :: np_COARE_3p0 = 2 ! "COARE 3.0" algorithm (Fairall et al. 2003) INTEGER, PARAMETER :: np_COARE_3p6 = 3 ! "COARE 3.6" algorithm (Edson et al. 2013) INTEGER, PARAMETER :: np_ECMWF = 4 ! "ECMWF" algorithm (IFS cycle 45r1) INTEGER, PARAMETER :: np_ANDREAS = 5 ! "ANDREAS" algorithm (Andreas et al. 2015) !#LB: #if defined key_si3 ! Same, over sea-ice: INTEGER :: nblk_ice ! choice of the bulk algorithm ! ! associated indices: INTEGER, PARAMETER :: np_ice_cst = 1 ! constant transfer coefficients INTEGER, PARAMETER :: np_ice_an05 = 2 ! Andreas et al., 2005 INTEGER, PARAMETER :: np_ice_lu12 = 3 ! Lupkes el al., 2012 INTEGER, PARAMETER :: np_ice_lg15 = 4 ! Lupkes & Gryanik, 2015 #endif !LB. !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: sbcblk.F90 15551 2021-11-28 20:19:36Z gsamson $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION sbc_blk_alloc() !!------------------------------------------------------------------- !! *** ROUTINE sbc_blk_alloc *** !!------------------------------------------------------------------- ALLOCATE( theta_zu(jpi,jpj), q_zu(jpi,jpj), STAT=sbc_blk_alloc ) CALL mpp_sum ( 'sbcblk', sbc_blk_alloc ) IF( sbc_blk_alloc /= 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_alloc: failed to allocate arrays' ) END FUNCTION sbc_blk_alloc #if defined key_si3 INTEGER FUNCTION sbc_blk_ice_alloc() !!------------------------------------------------------------------- !! *** ROUTINE sbc_blk_ice_alloc *** !!------------------------------------------------------------------- ALLOCATE( Cd_ice (jpi,jpj), Ch_ice (jpi,jpj), Ce_ice (jpi,jpj), & & theta_zu_i(jpi,jpj), q_zu_i(jpi,jpj), STAT=sbc_blk_ice_alloc ) CALL mpp_sum ( 'sbcblk', sbc_blk_ice_alloc ) IF( sbc_blk_ice_alloc /= 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_ice_alloc: failed to allocate arrays' ) END FUNCTION sbc_blk_ice_alloc #endif SUBROUTINE sbc_blk_init !!--------------------------------------------------------------------- !! *** ROUTINE sbc_blk_init *** !! !! ** Purpose : choose and initialize a bulk formulae formulation !! !! ** Method : !! !!---------------------------------------------------------------------- INTEGER :: jfpr ! dummy loop indice and argument INTEGER :: ios, ierror, ioptio ! Local integer !! CHARACTER(len=100) :: cn_dir ! Root directory for location of atmospheric forcing files TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read TYPE(FLD_N) :: sn_wndi, sn_wndj , sn_humi, sn_qsr ! informations about the fields to be read TYPE(FLD_N) :: sn_qlw , sn_tair , sn_prec, sn_snow ! " " TYPE(FLD_N) :: sn_slp , sn_uoatm, sn_voatm ! " " TYPE(FLD_N) :: sn_cc, sn_hpgi, sn_hpgj ! " " INTEGER :: ipka ! number of levels in the atmospheric variable NAMELIST/namsbc_blk/ ln_NCAR, ln_COARE_3p0, ln_COARE_3p6, ln_ECMWF, ln_ANDREAS, & ! bulk algorithm & rn_zqt, rn_zu, nn_iter_algo, ln_skin_cs, ln_skin_wl, & & rn_pfac, rn_efac, & & ln_crt_fbk, rn_stau_a, rn_stau_b, & ! current feedback & ln_humi_sph, ln_humi_dpt, ln_humi_rlh, ln_tair_pot, & & ln_Cx_ice_cst, rn_Cd_i, rn_Ce_i, rn_Ch_i, & & ln_Cx_ice_AN05, ln_Cx_ice_LU12, ln_Cx_ice_LG15, & & cn_dir, & & sn_wndi, sn_wndj, sn_qsr, sn_qlw , & ! input fields & sn_tair, sn_humi, sn_prec, sn_snow, sn_slp, & & sn_uoatm, sn_voatm, sn_cc, sn_hpgi, sn_hpgj #if defined key_drakkar TYPE(FLD_N) :: sn_wmod, sn_uw, sn_vw NAMELIST/namsbc_blk_drk/ ln_clim_forcing,sn_wmod, sn_uw, sn_vw #endif ! cool-skin / warm-layer !LB !!--------------------------------------------------------------------- ! ! ! allocate sbc_blk_core array IF( sbc_blk_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_blk : unable to allocate standard arrays' ) ! #if defined key_si3 IF( sbc_blk_ice_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_blk : unable to allocate standard ice arrays' ) #endif ! ! !** read bulk namelist READ ( numnam_ref, namsbc_blk, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_blk in reference namelist' ) ! READ ( numnam_cfg, namsbc_blk, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_blk in configuration namelist' ) ! IF(lwm) WRITE( numond, namsbc_blk ) #if defined key_drakkar ! !** read bulk drakkar namelist READ ( numnam_ref, namsbc_blk_drk, IOSTAT = ios, ERR = 903) 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_blk_drk in reference namelist' ) ! READ ( numnam_cfg, namsbc_blk_drk, IOSTAT = ios, ERR = 904 ) 904 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_blk_drk in configuration namelist' ) ! IF(lwm) WRITE( numond, namsbc_blk_drk ) #endif ! ! !** initialization of the chosen bulk formulae (+ check) ! !* select the bulk chosen in the namelist and check the choice ioptio = 0 IF( ln_NCAR ) THEN nblk = np_NCAR ; ioptio = ioptio + 1 ENDIF IF( ln_COARE_3p0 ) THEN nblk = np_COARE_3p0 ; ioptio = ioptio + 1 ENDIF IF( ln_COARE_3p6 ) THEN nblk = np_COARE_3p6 ; ioptio = ioptio + 1 ENDIF IF( ln_ECMWF ) THEN nblk = np_ECMWF ; ioptio = ioptio + 1 ENDIF IF( ln_ANDREAS ) THEN nblk = np_ANDREAS ; ioptio = ioptio + 1 ENDIF IF( ioptio /= 1 ) CALL ctl_stop( 'sbc_blk_init: Choose one and only one bulk algorithm' ) ! !** initialization of the cool-skin / warm-layer parametrization IF( ln_skin_cs .OR. ln_skin_wl ) THEN !! Some namelist sanity tests: IF( ln_NCAR ) & & CALL ctl_stop( 'sbc_blk_init: Cool-skin/warm-layer param. not compatible with NCAR algorithm' ) IF( ln_ANDREAS ) & & CALL ctl_stop( 'sbc_blk_init: Cool-skin/warm-layer param. not compatible with ANDREAS algorithm' ) !IF( nn_fsbc /= 1 ) & ! & CALL ctl_stop( 'sbc_blk_init: Please set "nn_fsbc" to 1 when using cool-skin/warm-layer param.') END IF IF( ln_skin_wl ) THEN !! Check if the frequency of downwelling solar flux input makes sense and if ln_dm2dc=T if it is daily! IF( (sn_qsr%freqh < 0.).OR.(sn_qsr%freqh > 24.) ) & & CALL ctl_stop( 'sbc_blk_init: Warm-layer param. (ln_skin_wl) not compatible with freq. of solar flux > daily' ) IF( (sn_qsr%freqh == 24.).AND.(.NOT. ln_dm2dc) ) & & CALL ctl_stop( 'sbc_blk_init: Please set ln_dm2dc=T for warm-layer param. (ln_skin_wl) to work properly' ) END IF ioptio = 0 IF( ln_humi_sph ) THEN nhumi = np_humi_sph ; ioptio = ioptio + 1 ENDIF IF( ln_humi_dpt ) THEN nhumi = np_humi_dpt ; ioptio = ioptio + 1 ENDIF IF( ln_humi_rlh ) THEN nhumi = np_humi_rlh ; ioptio = ioptio + 1 ENDIF IF( ioptio /= 1 ) CALL ctl_stop( 'sbc_blk_init: Choose one and only one type of air humidity' ) ! IF( ln_dm2dc ) THEN !* check: diurnal cycle on Qsr IF( sn_qsr%freqh /= 24. ) CALL ctl_stop( 'sbc_blk_init: ln_dm2dc=T only with daily short-wave input' ) IF( sn_qsr%ln_tint ) THEN CALL ctl_warn( 'sbc_blk_init: ln_dm2dc=T daily qsr time interpolation done by sbcdcy module', & & ' ==> We force time interpolation = .false. for qsr' ) sn_qsr%ln_tint = .false. ENDIF ENDIF #if defined key_si3 ioptio = 0 IF( ln_Cx_ice_cst ) THEN nblk_ice = np_ice_cst ; ioptio = ioptio + 1 ENDIF IF( ln_Cx_ice_AN05 ) THEN nblk_ice = np_ice_an05 ; ioptio = ioptio + 1 ENDIF IF( ln_Cx_ice_LU12 ) THEN nblk_ice = np_ice_lu12 ; ioptio = ioptio + 1 ENDIF IF( ln_Cx_ice_LG15 ) THEN nblk_ice = np_ice_lg15 ; ioptio = ioptio + 1 ENDIF IF( ioptio /= 1 ) CALL ctl_stop( 'sbc_blk_init: Choose one and only one ice-atm bulk algorithm' ) #endif ! !* set the bulk structure ! !- store namelist information in an array ! slf_i(jp_wndi ) = sn_wndi ; slf_i(jp_wndj ) = sn_wndj slf_i(jp_qsr ) = sn_qsr ; slf_i(jp_qlw ) = sn_qlw slf_i(jp_tair ) = sn_tair ; slf_i(jp_humi ) = sn_humi slf_i(jp_prec ) = sn_prec ; slf_i(jp_snow ) = sn_snow slf_i(jp_slp ) = sn_slp ; slf_i(jp_cc ) = sn_cc slf_i(jp_uoatm) = sn_uoatm ; slf_i(jp_voatm) = sn_voatm slf_i(jp_hpgi ) = sn_hpgi ; slf_i(jp_hpgj ) = sn_hpgj ! IF( .NOT. ln_abl ) THEN ! force to not use jp_hpgi and jp_hpgj, should already be done in namelist_* but we never know... slf_i(jp_hpgi)%clname = 'NOT USED' slf_i(jp_hpgj)%clname = 'NOT USED' ENDIF #if defined key_drakkar slf_i(jp_wmod ) = sn_wmod ; slf_i(jp_uw ) = sn_uw ; slf_i(jp_vw ) = sn_vw IF( .NOT. ln_clim_forcing) THEN slf_i(jp_wmod)%clname = 'NOT USED' slf_i(jp_uw )%clname = 'NOT USED' slf_i(jp_vw )%clname = 'NOT USED' ELSE slf_i(jp_wndi)%clname = 'NOT USED' slf_i(jp_wndj)%clname = 'NOT USED' ENDIF #endif ! ! !- allocate the bulk structure ALLOCATE( sf(jpfld), STAT=ierror ) IF( ierror > 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_init: unable to allocate sf structure' ) ! ! !- fill the bulk structure with namelist informations CALL fld_fill( sf, slf_i, cn_dir, 'sbc_blk_init', 'surface boundary condition -- bulk formulae', 'namsbc_blk' ) sf(jp_wndi )%zsgn = -1._wp ; sf(jp_wndj )%zsgn = -1._wp ! vector field at T point: overwrite default definition of zsgn sf(jp_uoatm)%zsgn = -1._wp ; sf(jp_voatm)%zsgn = -1._wp ! vector field at T point: overwrite default definition of zsgn sf(jp_hpgi )%zsgn = -1._wp ; sf(jp_hpgj )%zsgn = -1._wp ! vector field at T point: overwrite default definition of zsgn ! DO jfpr= 1, jpfld ! IF( ln_abl .AND. & & ( jfpr == jp_wndi .OR. jfpr == jp_wndj .OR. jfpr == jp_humi .OR. & & jfpr == jp_hpgi .OR. jfpr == jp_hpgj .OR. jfpr == jp_tair ) ) THEN ipka = jpka ! ABL: some fields are 3D input ELSE ipka = 1 ENDIF ! ALLOCATE( sf(jfpr)%fnow(jpi,jpj,ipka) ) ! IF( TRIM(sf(jfpr)%clrootname) == 'NOT USED' ) THEN !-- not used field --! (only now allocated and set to default) IF( jfpr == jp_slp ) THEN sf(jfpr)%fnow(:,:,1:ipka) = 101325._wp ! use standard pressure in Pa ELSEIF( jfpr == jp_prec .OR. jfpr == jp_snow .OR. jfpr == jp_uoatm .OR. jfpr == jp_voatm ) THEN sf(jfpr)%fnow(:,:,1:ipka) = 0._wp ! no precip or no snow or no surface currents ELSEIF( jfpr == jp_hpgi .OR. jfpr == jp_hpgj ) THEN IF( .NOT. ln_abl ) THEN DEALLOCATE( sf(jfpr)%fnow ) ! deallocate as not used in this case ELSE sf(jfpr)%fnow(:,:,1:ipka) = 0._wp ENDIF ELSEIF( jfpr == jp_cc ) THEN sf(jp_cc)%fnow(:,:,1:ipka) = pp_cldf #if defined key_drakkar ELSEIF( jfpr == jp_wmod .OR. jfpr == jp_uw .OR. jfpr == jp_vw ) THEN sf(jfpr)%fnow(:,:,1:ipka) = 0._wp #endif ELSE WRITE(ctmp1,*) 'sbc_blk_init: no default value defined for field number', jfpr CALL ctl_stop( ctmp1 ) ENDIF ELSE !-- used field --! IF( sf(jfpr)%ln_tint ) ALLOCATE( sf(jfpr)%fdta(jpi,jpj,ipka,2) ) ! allocate array for temporal interpolation ! IF( sf(jfpr)%freqh > 0. .AND. MOD( NINT(3600. * sf(jfpr)%freqh), nn_fsbc * NINT(rn_Dt) ) /= 0 ) & & CALL ctl_warn( 'sbc_blk_init: sbcmod timestep rn_Dt*nn_fsbc is NOT a submultiple of atmospheric forcing frequency.', & & ' This is not ideal. You should consider changing either rn_Dt or nn_fsbc value...' ) ENDIF END DO ! IF( ln_abl ) THEN ! ABL: read 3D fields for wind, temperature, humidity and pressure gradient rn_zqt = ght_abl(2) ! set the bulk altitude to ABL first level rn_zu = ght_abl(2) IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ABL formulation: overwrite rn_zqt & rn_zu with ABL first level altitude' ENDIF ! ! IF(lwp) THEN !** Control print ! WRITE(numout,*) !* namelist WRITE(numout,*) ' Namelist namsbc_blk (other than data information):' WRITE(numout,*) ' "NCAR" algorithm (Large and Yeager 2008) ln_NCAR = ', ln_NCAR WRITE(numout,*) ' "COARE 3.0" algorithm (Fairall et al. 2003) ln_COARE_3p0 = ', ln_COARE_3p0 WRITE(numout,*) ' "COARE 3.6" algorithm (Fairall 2018 + Edson al 2013) ln_COARE_3p6 = ', ln_COARE_3p6 WRITE(numout,*) ' "ECMWF" algorithm (IFS cycle 45r1) ln_ECMWF = ', ln_ECMWF WRITE(numout,*) ' "ANDREAS" algorithm (Andreas et al. 2015) ln_ANDREAS = ', ln_ANDREAS #if defined key_drakkar WRITE(numout,*) ' Use climatolofical forcing formulation ln_clim_forcing = ', ln_clim_forcing #endif WRITE(numout,*) ' Air temperature and humidity reference height (m) rn_zqt = ', rn_zqt WRITE(numout,*) ' Wind vector reference height (m) rn_zu = ', rn_zu WRITE(numout,*) ' factor applied on precipitation (total & snow) rn_pfac = ', rn_pfac WRITE(numout,*) ' factor applied on evaporation rn_efac = ', rn_efac WRITE(numout,*) ' (form absolute (=0) to relative winds(=1))' WRITE(numout,*) ' use surface current feedback on wind stress ln_crt_fbk = ', ln_crt_fbk IF(ln_crt_fbk) THEN WRITE(numout,*) ' Renault et al. 2020, eq. 10: Stau = Alpha * Wnd + Beta' WRITE(numout,*) ' Alpha rn_stau_a = ', rn_stau_a WRITE(numout,*) ' Beta rn_stau_b = ', rn_stau_b ENDIF ! WRITE(numout,*) SELECT CASE( nblk ) !* Print the choice of bulk algorithm CASE( np_NCAR ) ; WRITE(numout,*) ' ==>>> "NCAR" algorithm (Large and Yeager 2008)' CASE( np_COARE_3p0 ) ; WRITE(numout,*) ' ==>>> "COARE 3.0" algorithm (Fairall et al. 2003)' CASE( np_COARE_3p6 ) ; WRITE(numout,*) ' ==>>> "COARE 3.6" algorithm (Fairall 2018+Edson et al. 2013)' CASE( np_ECMWF ) ; WRITE(numout,*) ' ==>>> "ECMWF" algorithm (IFS cycle 45r1)' CASE( np_ANDREAS ) ; WRITE(numout,*) ' ==>>> "ANDREAS" algorithm (Andreas et al. 2015)' END SELECT ! WRITE(numout,*) WRITE(numout,*) ' use cool-skin parameterization (SSST) ln_skin_cs = ', ln_skin_cs WRITE(numout,*) ' use warm-layer parameterization (SSST) ln_skin_wl = ', ln_skin_wl ! WRITE(numout,*) SELECT CASE( nhumi ) !* Print the choice of air humidity CASE( np_humi_sph ) ; WRITE(numout,*) ' ==>>> air humidity is SPECIFIC HUMIDITY [kg/kg]' CASE( np_humi_dpt ) ; WRITE(numout,*) ' ==>>> air humidity is DEW-POINT TEMPERATURE [K]' CASE( np_humi_rlh ) ; WRITE(numout,*) ' ==>>> air humidity is RELATIVE HUMIDITY [%]' END SELECT ! !#LB: #if defined key_si3 IF( nn_ice > 0 ) THEN WRITE(numout,*) WRITE(numout,*) ' use constant ice-atm bulk transfer coeff. ln_Cx_ice_cst = ', ln_Cx_ice_cst WRITE(numout,*) ' use ice-atm bulk coeff. from Andreas et al., 2005 ln_Cx_ice_AN05 = ', ln_Cx_ice_AN05 WRITE(numout,*) ' use ice-atm bulk coeff. from Lupkes et al., 2012 ln_Cx_ice_LU12 = ', ln_Cx_ice_LU12 WRITE(numout,*) ' use ice-atm bulk coeff. from Lupkes & Gryanik, 2015 ln_Cx_ice_LG15 = ', ln_Cx_ice_LG15 ENDIF WRITE(numout,*) SELECT CASE( nblk_ice ) !* Print the choice of bulk algorithm CASE( np_ice_cst ) WRITE(numout,*) ' ==>>> Constant bulk transfer coefficients over sea-ice:' WRITE(numout,*) ' => Cd_ice, Ce_ice, Ch_ice =', REAL(rn_Cd_i,4), REAL(rn_Ce_i,4), REAL(rn_Ch_i,4) IF( (rn_Cd_i<0._wp).OR.(rn_Cd_i>1.E-2_wp).OR.(rn_Ce_i<0._wp).OR.(rn_Ce_i>1.E-2_wp).OR.(rn_Ch_i<0._wp).OR.(rn_Ch_i>1.E-2_wp) ) & & CALL ctl_stop( 'Be realistic in your pick of Cd_ice, Ce_ice & Ch_ice ! (0 < Cx < 1.E-2)') CASE( np_ice_an05 ) ; WRITE(numout,*) ' ==>>> bulk algo over ice: Andreas et al, 2005' CASE( np_ice_lu12 ) ; WRITE(numout,*) ' ==>>> bulk algo over ice: Lupkes et al, 2012' CASE( np_ice_lg15 ) ; WRITE(numout,*) ' ==>>> bulk algo over ice: Lupkes & Gryanik, 2015' END SELECT #endif !#LB. ! ENDIF ! END SUBROUTINE sbc_blk_init SUBROUTINE sbc_blk( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_blk *** !! !! ** Purpose : provide at each time step the surface ocean fluxes !! (momentum, heat, freshwater and runoff) !! !! ** Method : !! (1) READ each fluxes in NetCDF files: !! the wind velocity (i-component) at z=rn_zu (m/s) at T-point !! the wind velocity (j-component) at z=rn_zu (m/s) at T-point !! the specific humidity at z=rn_zqt (kg/kg) !! the air temperature at z=rn_zqt (Kelvin) !! the solar heat (W/m2) !! the Long wave (W/m2) !! the total precipitation (rain+snow) (Kg/m2/s) !! the snow (solid precipitation) (kg/m2/s) !! ABL dynamical forcing (i/j-components of either hpg or geostrophic winds) !! (2) CALL blk_oce_1 and blk_oce_2 !! !! C A U T I O N : never mask the surface stress fields !! the stress is assumed to be in the (i,j) mesh referential !! !! ** Action : defined at each time-step at the air-sea interface !! - utau, vtau i- and j-component of the wind stress !! - taum wind stress module at T-point !! - wndm wind speed module at T-point over free ocean or leads in presence of sea-ice !! - qns, qsr non-solar and solar heat fluxes !! - emp upward mass flux (evapo. - precip.) !! - sfx salt flux due to freezing/melting (non-zero only if ice is present) !! !! ** References : Large & Yeager, 2004 / Large & Yeager, 2008 !! Brodeau et al. Ocean Modelling 2010 !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj) :: zssq, zcd_du, zsen, zlat, zevp, zpre, ztheta REAL(wp) :: ztst LOGICAL :: llerr !!---------------------------------------------------------------------- ! CALL fld_read( kt, nn_fsbc, sf ) ! input fields provided at the current time-step ! Sanity/consistence test on humidity at first time step to detect potential screw-up: IF( kt == nit000 ) THEN ! mean humidity over ocean on proc ztst = glob_sum( 'sbcblk', sf(jp_humi)%fnow(:,:,1) * e1e2t(:,:) * tmask(:,:,1) ) / glob_sum( 'sbcblk', e1e2t(:,:) * tmask(:,:,1) ) llerr = .FALSE. SELECT CASE( nhumi ) CASE( np_humi_sph ) ! specific humidity => expect: 0. <= something < 0.065 [kg/kg] (0.061 is saturation at 45degC !!!) IF( (ztst < 0._wp) .OR. (ztst > 0.065_wp) ) llerr = .TRUE. CASE( np_humi_dpt ) ! dew-point temperature => expect: 110. <= something < 320. [K] IF( (ztst < 110._wp) .OR. (ztst > 320._wp) ) llerr = .TRUE. CASE( np_humi_rlh ) ! relative humidity => expect: 0. <= something < 100. [%] IF( (ztst < 0._wp) .OR. (ztst > 100._wp) ) llerr = .TRUE. END SELECT IF(llerr) THEN WRITE(ctmp1,'(" Error on mean humidity value: ",f10.5)') ztst CALL ctl_stop( 'STOP', ctmp1, 'Something is wrong with air humidity!!!', & & ' ==> check the unit in your input files' , & & ' ==> check consistence of namelist choice: specific? relative? dew-point?', & & ' ==> ln_humi_sph -> [kg/kg] | ln_humi_rlh -> [%] | ln_humi_dpt -> [K] !!!' ) ENDIF IF(lwp) THEN WRITE(numout,*) '' WRITE(numout,*) ' Global mean humidity at kt = nit000: ', ztst WRITE(numout,*) ' === Sanity/consistence test on air humidity sucessfuly passed! ===' WRITE(numout,*) '' ENDIF ENDIF !IF( kt == nit000 ) ! ! compute the surface ocean fluxes using bulk formulea IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN ! Specific humidity of air at z=rn_zqt SELECT CASE( nhumi ) CASE( np_humi_sph ) q_air_zt(:,:) = sf(jp_humi )%fnow(:,:,1) ! what we read in file is already a spec. humidity! CASE( np_humi_dpt ) IF((kt==nit000).AND.lwp) WRITE(numout,*) ' *** sbc_blk() => computing q_air out of dew-point and P !' q_air_zt(:,:) = q_sat( sf(jp_humi )%fnow(:,:,1), sf(jp_slp )%fnow(:,:,1) ) CASE( np_humi_rlh ) IF((kt==nit000).AND.lwp) WRITE(numout,*) ' *** sbc_blk() => computing q_air out of RH, t_air and slp !' !LBrm q_air_zt(:,:) = q_air_rh( 0.01_wp*sf(jp_humi )%fnow(:,:,1), & & sf(jp_tair )%fnow(:,:,1), sf(jp_slp )%fnow(:,:,1) ) !#LB: 0.01 => RH is % percent in file END SELECT ! Potential temperature of air at z=rn_zqt (most reanalysis products provide absolute temp., not potential temp.) IF( ln_tair_pot ) THEN ! temperature read into file is already potential temperature, do nothing... theta_air_zt(:,:) = sf(jp_tair )%fnow(:,:,1) ELSE ! temperature read into file is ABSOLUTE temperature (that's the case for ECMWF products for example...) IF((kt==nit000).AND.lwp) WRITE(numout,*) ' *** sbc_blk() => air temperature converted from ABSOLUTE to POTENTIAL!' zpre(:,:) = pres_temp( q_air_zt(:,:), sf(jp_slp)%fnow(:,:,1), rn_zu, pta=sf(jp_tair)%fnow(:,:,1) ) theta_air_zt(:,:) = theta_exner( sf(jp_tair)%fnow(:,:,1), zpre(:,:) ) ENDIF ! CALL blk_oce_1( kt, sf(jp_wndi )%fnow(:,:,1), sf(jp_wndj )%fnow(:,:,1), & ! <<= in & theta_air_zt(:,:), q_air_zt(:,:), & ! <<= in & sf(jp_slp )%fnow(:,:,1), sst_m, ssu_m, ssv_m, & ! <<= in & sf(jp_uoatm)%fnow(:,:,1), sf(jp_voatm)%fnow(:,:,1), & ! <<= in & sf(jp_qsr )%fnow(:,:,1), sf(jp_qlw )%fnow(:,:,1), & ! <<= in (wl/cs) & tsk_m, zssq, zcd_du, zsen, zlat, zevp ) ! =>> out CALL blk_oce_2( theta_air_zt(:,:), & ! <<= in & sf(jp_qlw )%fnow(:,:,1), sf(jp_prec )%fnow(:,:,1), & ! <<= in & sf(jp_snow )%fnow(:,:,1), tsk_m, & ! <<= in & zsen, zlat, zevp ) ! <=> in out ENDIF ! #if defined key_cice IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN qlw_ice(:,:,1) = sf(jp_qlw )%fnow(:,:,1) IF( ln_dm2dc ) THEN qsr_ice(:,:,1) = sbc_dcy( sf(jp_qsr)%fnow(:,:,1) ) ELSE qsr_ice(:,:,1) = sf(jp_qsr)%fnow(:,:,1) ENDIF tatm_ice(:,:) = sf(jp_tair)%fnow(:,:,1) !#LB: should it be POTENTIAL temperature (theta_air_zt) instead ???? qatm_ice(:,:) = q_air_zt(:,:) tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) * rn_pfac sprecip(:,:) = sf(jp_snow)%fnow(:,:,1) * rn_pfac wndi_ice(:,:) = sf(jp_wndi)%fnow(:,:,1) wndj_ice(:,:) = sf(jp_wndj)%fnow(:,:,1) ENDIF #endif #if defined key_top IF( ln_trcdc2dm ) THEN ! diurnal cycle in TOP IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN IF( ln_dm2dc ) THEN qsr_mean(:,:) = ( 1. - albo ) * sf(jp_qsr)%fnow(:,:,1) * tmask(:,:,1) ELSE ncpl_qsr_freq = sf(jp_qsr)%freqh * 3600 ! qsr_mean will be computed in TOP ENDIF ENDIF ENDIF #endif ! END SUBROUTINE sbc_blk SUBROUTINE blk_oce_1( kt, pwndi, pwndj, ptair, pqair, & ! inp & pslp , pst , pu , pv, & ! inp & puatm, pvatm, pdqsr , pdqlw , & ! inp & ptsk , pssq , pcd_du, psen, plat, pevp ) ! out !!--------------------------------------------------------------------- !! *** ROUTINE blk_oce_1 *** !! !! ** Purpose : if ln_blk=T, computes surface momentum, heat and freshwater fluxes !! if ln_abl=T, computes Cd x |U|, Ch x |U|, Ce x |U| for ABL integration !! !! ** Method : bulk formulae using atmospheric fields from : !! if ln_blk=T, atmospheric fields read in sbc_read !! if ln_abl=T, the ABL model at previous time-step !! !! ** Outputs : - pssq : surface humidity used to compute latent heat flux (kg/kg) !! - pcd_du : Cd x |dU| at T-points (m/s) !! - psen : sensible heat flux (W/m^2) !! - plat : latent heat flux (W/m^2) !! - pevp : evaporation (mm/s) #lolo !!--------------------------------------------------------------------- INTEGER , INTENT(in ) :: kt ! time step index REAL(wp), INTENT(in ), DIMENSION(:,:) :: pwndi ! atmospheric wind at T-point [m/s] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pwndj ! atmospheric wind at T-point [m/s] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pqair ! specific humidity at T-points [kg/kg] REAL(wp), INTENT(in ), DIMENSION(:,:) :: ptair ! potential temperature at T-points [Kelvin] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pslp ! sea-level pressure [Pa] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pst ! surface temperature [Celsius] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pu ! surface current at U-point (i-component) [m/s] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pv ! surface current at V-point (j-component) [m/s] REAL(wp), INTENT(in ), DIMENSION(:,:) :: puatm ! surface current seen by the atm at T-point (i-component) [m/s] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pvatm ! surface current seen by the atm at T-point (j-component) [m/s] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pdqsr ! downwelling solar (shortwave) radiation at surface [W/m^2] REAL(wp), INTENT(in ), DIMENSION(:,:) :: pdqlw ! downwelling longwave radiation at surface [W/m^2] REAL(wp), INTENT( out), DIMENSION(:,:) :: ptsk ! skin temp. (or SST if CS & WL not used) [Celsius] REAL(wp), INTENT( out), DIMENSION(:,:) :: pssq ! specific humidity at pst [kg/kg] REAL(wp), INTENT( out), DIMENSION(:,:) :: pcd_du REAL(wp), INTENT( out), DIMENSION(:,:) :: psen REAL(wp), INTENT( out), DIMENSION(:,:) :: plat REAL(wp), INTENT( out), DIMENSION(:,:) :: pevp ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zztmp ! local variable REAL(wp) :: zstmax, zstau #if defined key_cyclone REAL(wp), DIMENSION(jpi,jpj) :: zwnd_i, zwnd_j ! wind speed components at T-point #endif REAL(wp), DIMENSION(jpi,jpj) :: ztau_i, ztau_j ! wind stress components at T-point REAL(wp), DIMENSION(jpi,jpj) :: zU_zu ! bulk wind speed at height zu [m/s] REAL(wp), DIMENSION(jpi,jpj) :: zcd_oce ! momentum transfert coefficient over ocean REAL(wp), DIMENSION(jpi,jpj) :: zch_oce ! sensible heat transfert coefficient over ocean REAL(wp), DIMENSION(jpi,jpj) :: zce_oce ! latent heat transfert coefficient over ocean REAL(wp), DIMENSION(jpi,jpj) :: zsspt ! potential sea-surface temperature [K] REAL(wp), DIMENSION(jpi,jpj) :: zpre, ztabs ! air pressure [Pa] & absolute temperature [K] REAL(wp), DIMENSION(jpi,jpj) :: zztmp1, zztmp2 #if defined key_drakkar REAL(wp), DIMENSION(jpi,jpj) :: zwu, zwv #endif !!--------------------------------------------------------------------- ! ! local scalars ( place there for vector optimisation purposes) ! ! Temporary conversion from Celcius to Kelvin (and set minimum value far above 0 K) ptsk(:,:) = pst(:,:) + rt0 ! by default: skin temperature = "bulk SST" (will remain this way if NCAR algorithm used!) ! sea surface potential temperature [K] zsspt(:,:) = theta_exner( ptsk(:,:), pslp(:,:) ) ! --- cloud cover --- ! cloud_fra(:,:) = sf(jp_cc)%fnow(:,:,1) ! ----------------------------------------------------------------------------- ! ! 0 Wind components and module at T-point relative to the moving ocean ! ! ----------------------------------------------------------------------------- ! ! ... components ( U10m - U_oce ) at T-point (unmasked) #if defined key_cyclone zwnd_i(:,:) = 0._wp zwnd_j(:,:) = 0._wp CALL wnd_cyc( kt, zwnd_i, zwnd_j ) ! add analytical tropical cyclone (Vincent et al. JGR 2012) DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) zwnd_i(ji,jj) = pwndi(ji,jj) + zwnd_i(ji,jj) zwnd_j(ji,jj) = pwndj(ji,jj) + zwnd_j(ji,jj) ! ... scalar wind at T-point (not masked) wndm(ji,jj) = SQRT( zwnd_i(ji,jj) * zwnd_i(ji,jj) + zwnd_j(ji,jj) * zwnd_j(ji,jj) ) END_2D #else #if defined key_drakkar IF (ln_clim_forcing) THEN wndm(:,:) = sf(jp_wmod)%fnow(:,:,1) ELSE #endif ! ... scalar wind module at T-point (not masked) DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) wndm(ji,jj) = SQRT( pwndi(ji,jj) * pwndi(ji,jj) + pwndj(ji,jj) * pwndj(ji,jj) ) END_2D #if defined key_drakkar ENDIF #endif #endif ! ----------------------------------------------------------------------------- ! ! I Solar FLUX ! ! ----------------------------------------------------------------------------- ! ! ocean albedo assumed to be constant + modify now Qsr to include the diurnal cycle ! Short Wave zztmp = 1. - albo IF( ln_dm2dc ) THEN qsr(:,:) = zztmp * sbc_dcy( pdqsr(:,:) ) * tmask(:,:,1) ELSE qsr(:,:) = zztmp * pdqsr(:,:) * tmask(:,:,1) ENDIF ! ----------------------------------------------------------------------------- ! ! II Turbulent FLUXES ! ! ----------------------------------------------------------------------------- ! ! specific humidity at SST pssq(:,:) = rdct_qsat_salt * q_sat( ptsk(:,:), pslp(:,:) ) IF( ln_skin_cs .OR. ln_skin_wl ) THEN !! Backup "bulk SST" and associated spec. hum. zztmp1(:,:) = zsspt(:,:) zztmp2(:,:) = pssq(:,:) ENDIF !! Time to call the user-selected bulk parameterization for !! == transfer coefficients ==! Cd, Ch, Ce at T-point, and more... SELECT CASE( nblk ) CASE( np_NCAR ) CALL turb_ncar ( rn_zqt, rn_zu, zsspt, ptair, pssq, pqair, wndm, & & zcd_oce, zch_oce, zce_oce, theta_zu, q_zu, zU_zu , & & nb_iter=nn_iter_algo ) ! CASE( np_COARE_3p0 ) CALL turb_coare3p0( kt, rn_zqt, rn_zu, zsspt, ptair, pssq, pqair, wndm, & & ln_skin_cs, ln_skin_wl, & & zcd_oce, zch_oce, zce_oce, theta_zu, q_zu, zU_zu, & & nb_iter=nn_iter_algo, & & Qsw=qsr(:,:), rad_lw=pdqlw(:,:), slp=pslp(:,:) ) ! CASE( np_COARE_3p6 ) CALL turb_coare3p6( kt, rn_zqt, rn_zu, zsspt, ptair, pssq, pqair, wndm, & & ln_skin_cs, ln_skin_wl, & & zcd_oce, zch_oce, zce_oce, theta_zu, q_zu, zU_zu, & & nb_iter=nn_iter_algo, & & Qsw=qsr(:,:), rad_lw=pdqlw(:,:), slp=pslp(:,:) ) ! CASE( np_ECMWF ) CALL turb_ecmwf ( kt, rn_zqt, rn_zu, zsspt, ptair, pssq, pqair, wndm, & & ln_skin_cs, ln_skin_wl, & & zcd_oce, zch_oce, zce_oce, theta_zu, q_zu, zU_zu, & & nb_iter=nn_iter_algo, & & Qsw=qsr(:,:), rad_lw=pdqlw(:,:), slp=pslp(:,:) ) ! CASE( np_ANDREAS ) CALL turb_andreas ( rn_zqt, rn_zu, zsspt, ptair, pssq, pqair, wndm, & & zcd_oce, zch_oce, zce_oce, theta_zu, q_zu, zU_zu , & & nb_iter=nn_iter_algo ) ! CASE DEFAULT CALL ctl_stop( 'STOP', 'sbc_oce: non-existing bulk parameterizaton selected' ) ! END SELECT IF( iom_use('Cd_oce') ) CALL iom_put("Cd_oce", zcd_oce * tmask(:,:,1)) IF( iom_use('Ce_oce') ) CALL iom_put("Ce_oce", zce_oce * tmask(:,:,1)) IF( iom_use('Ch_oce') ) CALL iom_put("Ch_oce", zch_oce * tmask(:,:,1)) !! LB: mainly here for debugging purpose: IF( iom_use('theta_zt') ) CALL iom_put("theta_zt", (ptair-rt0) * tmask(:,:,1)) ! potential temperature at z=zt IF( iom_use('q_zt') ) CALL iom_put("q_zt", pqair * tmask(:,:,1)) ! specific humidity " IF( iom_use('theta_zu') ) CALL iom_put("theta_zu", (theta_zu -rt0) * tmask(:,:,1)) ! potential temperature at z=zu IF( iom_use('q_zu') ) CALL iom_put("q_zu", q_zu * tmask(:,:,1)) ! specific humidity " IF( iom_use('ssq') ) CALL iom_put("ssq", pssq * tmask(:,:,1)) ! saturation specific humidity at z=0 IF( iom_use('wspd_blk') ) CALL iom_put("wspd_blk", zU_zu * tmask(:,:,1)) ! bulk wind speed at z=zu IF( ln_skin_cs .OR. ln_skin_wl ) THEN !! In the presence of sea-ice we forget about the cool-skin/warm-layer update of zsspt, pssq & ptsk: WHERE ( fr_i(:,:) > 0.001_wp ) ! sea-ice present, we forget about the update, using what we backed up before call to turb_*() zsspt(:,:) = zztmp1(:,:) pssq(:,:) = zztmp2(:,:) END WHERE ! apply potential temperature increment to abolute SST ptsk(:,:) = ptsk(:,:) + ( zsspt(:,:) - zztmp1(:,:) ) END IF ! Turbulent fluxes over ocean => BULK_FORMULA @ sbc_phy.F90 ! ------------------------------------------------------------- IF( ln_abl ) THEN !== ABL formulation ==! multiplication by rho_air and turbulent fluxes computation done in ablstp DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) zztmp = zU_zu(ji,jj) wndm(ji,jj) = zztmp ! Store zU_zu in wndm to compute ustar2 in ablmod pcd_du(ji,jj) = zztmp * zcd_oce(ji,jj) psen(ji,jj) = zztmp * zch_oce(ji,jj) pevp(ji,jj) = zztmp * zce_oce(ji,jj) zpre(ji,jj) = pres_temp( pqair(ji,jj), pslp(ji,jj), rn_zu, ptpot=ptair(ji,jj), pta=ztabs(ji,jj) ) rhoa(ji,jj) = rho_air( ztabs(ji,jj), pqair(ji,jj), zpre(ji,jj) ) END_2D ELSE !== BLK formulation ==! turbulent fluxes computation DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) zpre(ji,jj) = pres_temp( q_zu(ji,jj), pslp(ji,jj), rn_zu, ptpot=theta_zu(ji,jj), pta=ztabs(ji,jj) ) rhoa(ji,jj) = rho_air( ztabs(ji,jj), q_zu(ji,jj), zpre(ji,jj) ) END_2D CALL BULK_FORMULA( rn_zu, zsspt(:,:), pssq(:,:), theta_zu(:,:), q_zu(:,:), & & zcd_oce(:,:), zch_oce(:,:), zce_oce(:,:), & & wndm(:,:), zU_zu(:,:), pslp(:,:), rhoa(:,:), & & taum(:,:), psen(:,:), plat(:,:), & & pEvap=pevp(:,:), pfact_evap=rn_efac ) psen(:,:) = psen(:,:) * tmask(:,:,1) plat(:,:) = plat(:,:) * tmask(:,:,1) taum(:,:) = taum(:,:) * tmask(:,:,1) pevp(:,:) = pevp(:,:) * tmask(:,:,1) #if defined key_drakkar IF ( ln_clim_forcing ) THEN zwu(:,:) = sf(jp_uw)%fnow(:,:,1) zwv(:,:) = sf(jp_vw)%fnow(:,:,1) DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) IF( wndm(ji,jj) > 0._wp ) THEN zztmp = taum(ji,jj) / wndm(ji,jj) / wndm(ji,jj) ! note that key_cyclone is not supported with climatological forcing ztau_i(ji,jj) = zztmp * zwu(ji,jj) ztau_j(ji,jj) = zztmp * zwv(ji,jj) ELSE ztau_i(ji,jj) = 0._wp ztau_j(ji,jj) = 0._wp ENDIF END_2D ELSE #endif DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) IF( wndm(ji,jj) > 0._wp ) THEN zztmp = taum(ji,jj) / wndm(ji,jj) #if defined key_cyclone ztau_i(ji,jj) = zztmp * zwnd_i(ji,jj) ztau_j(ji,jj) = zztmp * zwnd_j(ji,jj) #else ztau_i(ji,jj) = zztmp * pwndi(ji,jj) ztau_j(ji,jj) = zztmp * pwndj(ji,jj) #endif ELSE ztau_i(ji,jj) = 0._wp ztau_j(ji,jj) = 0._wp ENDIF END_2D #if defined key_drakkar ENDIF #endif IF( ln_crt_fbk ) THEN ! aply eq. 10 and 11 of Renault et al. 2020 (doi: 10.1029/2019MS001715) zstmax = MIN( rn_stau_a * 3._wp + rn_stau_b, 0._wp ) ! set the max value of Stau corresponding to a wind of 3 m/s (<0) DO_2D( 0, 1, 0, 1 ) ! end at jpj and jpi, as ztau_j(ji,jj+1) ztau_i(ji+1,jj) used in the next loop zstau = MIN( rn_stau_a * wndm(ji,jj) + rn_stau_b, zstmax ) ! stau (<0) must be smaller than zstmax ztau_i(ji,jj) = ztau_i(ji,jj) + zstau * ( 0.5_wp * ( pu(ji-1,jj ) + pu(ji,jj) ) - puatm(ji,jj) ) ztau_j(ji,jj) = ztau_j(ji,jj) + zstau * ( 0.5_wp * ( pv(ji ,jj-1) + pv(ji,jj) ) - pvatm(ji,jj) ) taum(ji,jj) = SQRT( ztau_i(ji,jj) * ztau_i(ji,jj) + ztau_j(ji,jj) * ztau_j(ji,jj) ) END_2D ENDIF ! ... utau, vtau at U- and V_points, resp. ! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines ! Note that coastal wind stress is not used in the code... so this extra care has no effect DO_2D( 0, 0, 0, 0 ) ! start loop at 2, in case ln_crt_fbk = T utau(ji,jj) = 0.5 * ( 2. - umask(ji,jj,1) ) * ( ztau_i(ji,jj) + ztau_i(ji+1,jj ) ) & & * MAX(tmask(ji,jj,1),tmask(ji+1,jj,1)) vtau(ji,jj) = 0.5 * ( 2. - vmask(ji,jj,1) ) * ( ztau_j(ji,jj) + ztau_j(ji ,jj+1) ) & & * MAX(tmask(ji,jj,1),tmask(ji,jj+1,1)) END_2D IF( ln_crt_fbk ) THEN CALL lbc_lnk( 'sbcblk', utau, 'U', -1._wp, vtau, 'V', -1._wp, taum, 'T', 1._wp ) ELSE CALL lbc_lnk( 'sbcblk', utau, 'U', -1._wp, vtau, 'V', -1._wp ) ENDIF ! Saving open-ocean wind-stress (module and components) on T-points: CALL iom_put( "taum_oce", taum(:,:)*tmask(:,:,1) ) ! output wind stress module !#LB: These 2 lines below mostly here for 'STATION_ASF' test-case, otherwize "utau" (U-grid) and vtau" (V-grid) does the job in: [DYN/dynatf.F90]) CALL iom_put( "utau_oce", ztau_i(:,:)*tmask(:,:,1) ) ! utau at T-points! CALL iom_put( "vtau_oce", ztau_j(:,:)*tmask(:,:,1) ) ! vtau at T-points! IF(sn_cfctl%l_prtctl) THEN CALL prt_ctl( tab2d_1=pssq , clinfo1=' blk_oce_1: pssq : ') CALL prt_ctl( tab2d_1=wndm , clinfo1=' blk_oce_1: wndm : ') CALL prt_ctl( tab2d_1=utau , clinfo1=' blk_oce_1: utau : ', mask1=umask, & & tab2d_2=vtau , clinfo2=' vtau : ', mask2=vmask ) CALL prt_ctl( tab2d_1=zcd_oce, clinfo1=' blk_oce_1: Cd : ') ENDIF ! ENDIF ! ln_blk / ln_abl ptsk(:,:) = ( ptsk(:,:) - rt0 ) * tmask(:,:,1) ! Back to Celsius IF( ln_skin_cs .OR. ln_skin_wl ) THEN CALL iom_put( "t_skin" , ptsk ) ! T_skin in Celsius CALL iom_put( "dt_skin" , ptsk - pst ) ! T_skin - SST temperature difference ENDIF ! END SUBROUTINE blk_oce_1 SUBROUTINE blk_oce_2( ptair, pdqlw, pprec, psnow, & ! <<= in & ptsk, psen, plat, pevp ) ! <<= in !!--------------------------------------------------------------------- !! *** ROUTINE blk_oce_2 *** !! !! ** Purpose : finalize the momentum, heat and freshwater fluxes computation !! at the ocean surface at each time step knowing Cd, Ch, Ce and !! atmospheric variables (from ABL or external data) !! #if defined key_drakkar !! ** Outputs : - emp : evaporation minus precipitation (kg/m2/s) !! - qns : Non Solar heat flux over the ocean (W/m2) !! (include heat content of the precip, evap !! latent heat flux from melting snow ) !! - qns_oce : Just the sensible, latent and LW (to be used in SI3) !! - qsr_oce : = qsr (to be used in SI3) #else !! ** Outputs : - utau : i-component of the stress at U-point (N/m2) !! - vtau : j-component of the stress at V-point (N/m2) !! - taum : Wind stress module at T-point (N/m2) !! - wndm : Wind speed module at T-point (m/s) !! - qsr : Solar heat flux over the ocean (W/m2) !! - qns : Non Solar heat flux over the ocean (W/m2) !! - emp : evaporation minus precipitation (kg/m2/s) !!--------------------------------------------------------------------- #endif REAL(wp), INTENT(in), DIMENSION(:,:) :: ptair ! potential temperature of air #LB: confirm! REAL(wp), INTENT(in), DIMENSION(:,:) :: pdqlw ! downwelling longwave radiation at surface [W/m^2] REAL(wp), INTENT(in), DIMENSION(:,:) :: pprec REAL(wp), INTENT(in), DIMENSION(:,:) :: psnow REAL(wp), INTENT(in), DIMENSION(:,:) :: ptsk ! SKIN surface temperature [Celsius] REAL(wp), INTENT(in), DIMENSION(:,:) :: psen REAL(wp), INTENT(in), DIMENSION(:,:) :: plat REAL(wp), INTENT(in), DIMENSION(:,:) :: pevp ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zztmp,zz1,zz2,zz3 ! local variable REAL(wp), DIMENSION(jpi,jpj) :: zqlw ! net long wave radiative heat flux REAL(wp), DIMENSION(jpi,jpj) :: zcptrain, zcptsnw, zcptn ! Heat content per unit mass (J/kg) !!--------------------------------------------------------------------- ! ! Heat content per unit mass (J/kg) zcptrain(:,:) = ( ptair - rt0 ) * rcp * tmask(:,:,1) zcptsnw (:,:) = ( MIN( ptair, rt0 ) - rt0 ) * rcpi * tmask(:,:,1) zcptn (:,:) = ptsk * rcp * tmask(:,:,1) ! ! ----------------------------------------------------------------------------- ! ! III Net longwave radiative FLUX ! ! ----------------------------------------------------------------------------- ! !! #LB: now moved after Turbulent fluxes because must use the skin temperature rather than bulk SST !! (ptsk is skin temperature if ln_skin_cs==.TRUE. .OR. ln_skin_wl==.TRUE.) zqlw(:,:) = qlw_net( pdqlw(:,:), ptsk(:,:)+rt0 ) ! ----------------------------------------------------------------------------- ! ! IV Total FLUXES ! ! ----------------------------------------------------------------------------- ! ! emp (:,:) = ( pevp(:,:) - pprec(:,:) * rn_pfac ) * tmask(:,:,1) ! mass flux (evap. - precip.) ! qns(:,:) = zqlw(:,:) + psen(:,:) + plat(:,:) & ! Downward Non Solar & - psnow(:,:) * rn_pfac * rLfus & ! remove latent melting heat for solid precip & - pevp(:,:) * zcptn(:,:) & ! remove evap heat content at SST & + ( pprec(:,:) - psnow(:,:) ) * rn_pfac * zcptrain(:,:) & ! add liquid precip heat content at Tair & + psnow(:,:) * rn_pfac * zcptsnw(:,:) ! add solid precip heat content at min(Tair,Tsnow) qns(:,:) = qns(:,:) * tmask(:,:,1) ! #if defined key_si3 qns_oce(:,:) = zqlw(:,:) + psen(:,:) + plat(:,:) ! non solar without emp (only needed by SI3) qsr_oce(:,:) = qsr(:,:) #endif ! CALL iom_put( "rho_air" , rhoa*tmask(:,:,1) ) ! output air density [kg/m^3] CALL iom_put( "evap_oce" , pevp ) ! evaporation CALL iom_put( "qlw_oce" , zqlw ) ! output downward longwave heat over the ocean CALL iom_put( "qsb_oce" , psen ) ! output downward sensible heat over the ocean CALL iom_put( "qla_oce" , plat ) ! output downward latent heat over the ocean tprecip(:,:) = pprec(:,:) * rn_pfac * tmask(:,:,1) ! output total precipitation [kg/m2/s] sprecip(:,:) = psnow(:,:) * rn_pfac * tmask(:,:,1) ! output solid precipitation [kg/m2/s] CALL iom_put( 'snowpre', sprecip ) ! Snow CALL iom_put( 'precip' , tprecip ) ! Total precipitation ! IF ( nn_ice == 0 ) THEN CALL iom_put( "qemp_oce" , qns-zqlw-psen-plat ) ! output downward heat content of E-P over the ocean CALL iom_put( "qns_oce" , qns ) ! output downward non solar heat over the ocean CALL iom_put( "qsr_oce" , qsr ) ! output downward solar heat over the ocean CALL iom_put( "qt_oce" , qns+qsr ) ! output total downward heat over the ocean ENDIF ! IF(sn_cfctl%l_prtctl) THEN CALL prt_ctl(tab2d_1=zqlw , clinfo1=' blk_oce_2: zqlw : ') CALL prt_ctl(tab2d_1=psen , clinfo1=' blk_oce_2: psen : ' ) CALL prt_ctl(tab2d_1=plat , clinfo1=' blk_oce_2: plat : ' ) CALL prt_ctl(tab2d_1=qns , clinfo1=' blk_oce_2: qns : ' ) CALL prt_ctl(tab2d_1=emp , clinfo1=' blk_oce_2: emp : ') ENDIF ! END SUBROUTINE blk_oce_2 #if defined key_si3 !!---------------------------------------------------------------------- !! 'key_si3' SI3 sea-ice model !!---------------------------------------------------------------------- !! blk_ice_1 : provide the air-ice stress !! blk_ice_2 : provide the heat and mass fluxes at air-ice interface !! blk_ice_qcn : provide ice surface temperature and snow/ice conduction flux (emulating conduction flux) !!---------------------------------------------------------------------- SUBROUTINE blk_ice_1( pwndi, pwndj, ptair, pqair, pslp , puice, pvice, ptsui, & ! inputs & putaui, pvtaui, pseni, pevpi, pssqi, pcd_dui ) ! optional outputs !!--------------------------------------------------------------------- !! *** ROUTINE blk_ice_1 *** !! !! ** Purpose : provide the surface boundary condition over sea-ice !! !! ** Method : compute momentum using bulk formulation !! formulea, ice variables and read atmospheric fields. !! NB: ice drag coefficient is assumed to be a constant !!--------------------------------------------------------------------- REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pslp ! sea-level pressure [Pa] REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pwndi ! atmospheric wind at T-point [m/s] REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pwndj ! atmospheric wind at T-point [m/s] REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: ptair ! atmospheric potential temperature at T-point [K] REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pqair ! atmospheric specific humidity at T-point [kg/kg] REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: puice ! sea-ice velocity on I or C grid [m/s] REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: pvice ! " REAL(wp) , INTENT(in ), DIMENSION(:,: ) :: ptsui ! sea-ice surface temperature [K] REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: putaui ! if ln_blk REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pvtaui ! if ln_blk REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pseni ! if ln_abl REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pevpi ! if ln_abl REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pssqi ! if ln_abl REAL(wp) , INTENT( out), DIMENSION(:,: ), OPTIONAL :: pcd_dui ! if ln_abl ! INTEGER :: ji, jj ! dummy loop indices REAL(wp) :: zootm_su ! sea-ice surface mean temperature REAL(wp) :: zztmp1, zztmp2 ! temporary scalars REAL(wp), DIMENSION(jpi,jpj) :: ztmp, zsipt ! temporary array #if defined key_drakkar REAL(wp), DIMENSION(jpi,jpj) :: zwu, zwv ! temporary array #endif !!--------------------------------------------------------------------- ! ! ------------------------------------------------------------ ! ! Wind module relative to the moving ice ( U10m - U_ice ) ! ! ------------------------------------------------------------ ! ! C-grid ice dynamics : U & V-points (same as ocean) #if defined key_drakkar IF ( ln_clim_forcing) THEN wndm_ice(:,:) = sf(jp_wmod)%fnow(:,:,1) ELSE #endif DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) wndm_ice(ji,jj) = SQRT( pwndi(ji,jj) * pwndi(ji,jj) + pwndj(ji,jj) * pwndj(ji,jj) ) END_2D #if defined key_drakkar ENDIF #endif ! ! potential sea-ice surface temperature [K] zsipt(:,:) = theta_exner( ptsui(:,:), pslp(:,:) ) ! sea-ice <-> atmosphere bulk transfer coefficients SELECT CASE( nblk_ice ) CASE( np_ice_cst ) ! Constant bulk transfer coefficients over sea-ice: Cd_ice(:,:) = rn_Cd_i Ch_ice(:,:) = rn_Ch_i Ce_ice(:,:) = rn_Ce_i ! no height adjustment, keeping zt values: theta_zu_i(:,:) = ptair(:,:) q_zu_i(:,:) = pqair(:,:) CASE( np_ice_an05 ) ! calculate new drag from Lupkes(2015) equations ztmp(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ! temporary array for SSQ CALL turb_ice_an05( rn_zqt, rn_zu, zsipt, ptair, ztmp, pqair, wndm_ice, & & Cd_ice, Ch_ice, Ce_ice, theta_zu_i, q_zu_i ) !! CASE( np_ice_lu12 ) ztmp(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ! temporary array for SSQ CALL turb_ice_lu12( rn_zqt, rn_zu, zsipt, ptair, ztmp, pqair, wndm_ice, fr_i, & & Cd_ice, Ch_ice, Ce_ice, theta_zu_i, q_zu_i ) !! CASE( np_ice_lg15 ) ! calculate new drag from Lupkes(2015) equations ztmp(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ! temporary array for SSQ CALL turb_ice_lg15( rn_zqt, rn_zu, zsipt, ptair, ztmp, pqair, wndm_ice, fr_i, & & Cd_ice, Ch_ice, Ce_ice, theta_zu_i, q_zu_i ) !! END SELECT IF( iom_use('Cd_ice').OR.iom_use('Ce_ice').OR.iom_use('Ch_ice').OR.iom_use('taum_ice').OR.iom_use('utau_ice').OR.iom_use('vtau_ice') ) & & ztmp(:,:) = ( 1._wp - MAX(0._wp, SIGN( 1._wp, 1.E-6_wp - fr_i )) )*tmask(:,:,1) ! mask for presence of ice ! IF( iom_use('Cd_ice') ) CALL iom_put("Cd_ice", Cd_ice*ztmp) IF( iom_use('Ce_ice') ) CALL iom_put("Ce_ice", Ce_ice*ztmp) IF( iom_use('Ch_ice') ) CALL iom_put("Ch_ice", Ch_ice*ztmp) IF( ln_blk ) THEN ! ---------------------------------------------------- ! ! Wind stress relative to nonmoving ice ( U10m ) ! ! ---------------------------------------------------- ! ! supress moving ice in wind stress computation as we don't know how to do it properly... #if defined key_drakkar IF ( ln_clim_forcing ) THEN zwu(:,:) = sf(jp_uw)%fnow(:,:,1) zwv(:,:) = sf(jp_vw)%fnow(:,:,1) DO_2D( 0, 1, 0, 1 ) ! at T point zztmp1 = rhoa(ji,jj) * Cd_ice(ji,jj) putaui(ji,jj) = zztmp1 * zwu (ji,jj) pvtaui(ji,jj) = zztmp1 * zwv (ji,jj) END_2D ELSE #endif DO_2D( 0, 1, 0, 1 ) ! at T point zztmp1 = rhoa(ji,jj) * Cd_ice(ji,jj) * wndm_ice(ji,jj) putaui(ji,jj) = zztmp1 * pwndi(ji,jj) pvtaui(ji,jj) = zztmp1 * pwndj(ji,jj) END_2D #if defined key_drakkar ENDIF #endif !#LB: saving the module, and x-y components, of the ai wind-stress at T-points: NOT weighted by the ice concentration !!! IF(iom_use('taum_ice')) CALL iom_put('taum_ice', SQRT( putaui*putaui + pvtaui*pvtaui )*ztmp ) !#LB: These 2 lines below mostly here for 'STATION_ASF' test-case, otherwize "utau_oi" (U-grid) and vtau_oi" (V-grid) does the job in: [ICE/icedyn_rhg_evp.F90]) IF(iom_use('utau_ice')) CALL iom_put("utau_ice", putaui*ztmp) ! utau at T-points! IF(iom_use('vtau_ice')) CALL iom_put("vtau_ice", pvtaui*ztmp) ! vtau at T-points! ! DO_2D( 0, 0, 0, 0 ) ! U & V-points (same as ocean). !#LB: QUESTION?? so SI3 expects wind stress vector to be provided at U & V points? Not at T-points ? ! take care of the land-sea mask to avoid "pollution" of coastal stress. p[uv]taui used in frazil and rheology zztmp1 = 0.5_wp * ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji+1,jj ,1) ) zztmp2 = 0.5_wp * ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji ,jj+1,1) ) putaui(ji,jj) = zztmp1 * ( putaui(ji,jj) + putaui(ji+1,jj ) ) pvtaui(ji,jj) = zztmp2 * ( pvtaui(ji,jj) + pvtaui(ji ,jj+1) ) END_2D CALL lbc_lnk( 'sbcblk', putaui, 'U', -1._wp, pvtaui, 'V', -1._wp ) ! IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab2d_1=putaui , clinfo1=' blk_ice: putaui : ' & & , tab2d_2=pvtaui , clinfo2=' pvtaui : ' ) ELSE ! ln_abl DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) pcd_dui(ji,jj) = wndm_ice(ji,jj) * Cd_ice(ji,jj) pseni (ji,jj) = wndm_ice(ji,jj) * Ch_ice(ji,jj) pevpi (ji,jj) = wndm_ice(ji,jj) * Ce_ice(ji,jj) END_2D pssqi(:,:) = q_sat( ptsui(:,:), pslp(:,:), l_ice=.TRUE. ) ; ! more accurate way to obtain ssq ! ENDIF ! ln_blk / ln_abl ! IF(sn_cfctl%l_prtctl) CALL prt_ctl(tab2d_1=wndm_ice , clinfo1=' blk_ice: wndm_ice : ') ! END SUBROUTINE blk_ice_1 SUBROUTINE blk_ice_2( ptsu, phs, phi, palb, ptair, pqair, pslp, pdqlw, pprec, psnow ) !!--------------------------------------------------------------------- !! *** ROUTINE blk_ice_2 *** !! !! ** Purpose : provide the heat and mass fluxes at air-ice interface !! !! ** Method : compute heat and freshwater exchanged !! between atmosphere and sea-ice using bulk formulation !! formulea, ice variables and read atmmospheric fields. !! !! caution : the net upward water flux has with mm/day unit !!--------------------------------------------------------------------- REAL(wp), DIMENSION(:,:,:), INTENT(in) :: ptsu ! sea ice surface temperature [K] REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phs ! snow thickness REAL(wp), DIMENSION(:,:,:), INTENT(in) :: phi ! ice thickness REAL(wp), DIMENSION(:,:,:), INTENT(in) :: palb ! ice albedo (all skies) REAL(wp), DIMENSION(:,: ), INTENT(in) :: ptair ! potential temperature of air #LB: okay ??? REAL(wp), DIMENSION(:,: ), INTENT(in) :: pqair ! specific humidity of air REAL(wp), DIMENSION(:,: ), INTENT(in) :: pslp REAL(wp), DIMENSION(:,: ), INTENT(in) :: pdqlw REAL(wp), DIMENSION(:,: ), INTENT(in) :: pprec REAL(wp), DIMENSION(:,: ), INTENT(in) :: psnow !! INTEGER :: ji, jj, jl ! dummy loop indices REAL(wp) :: zst, zst3, zsq, zsipt ! local variable REAL(wp) :: zcoef_dqlw, zcoef_dqla ! - - REAL(wp) :: zztmp, zzblk, zztmp1, z1_rLsub ! - - REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_qlw ! long wave heat flux over ice REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_qsb ! sensible heat flux over ice REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_dqlw ! long wave heat sensitivity over ice REAL(wp), DIMENSION(jpi,jpj,jpl) :: z_dqsb ! sensible heat sensitivity over ice REAL(wp), DIMENSION(jpi,jpj) :: zevap, zsnw ! evaporation and snw distribution after wind blowing (SI3) REAL(wp), DIMENSION(jpi,jpj) :: ztmp, ztmp2 REAL(wp), DIMENSION(jpi,jpj) :: ztri REAL(wp), DIMENSION(jpi,jpj) :: zcptrain, zcptsnw, zcptn ! Heat content per unit mass (J/kg) !!--------------------------------------------------------------------- ! zcoef_dqlw = 4._wp * emiss_i * stefan ! local scalars zztmp = 1. / ( 1. - albo ) dqla_ice(:,:,:) = 0._wp ! Heat content per unit mass (J/kg) zcptrain(:,:) = ( ptair - rt0 ) * rcp * tmask(:,:,1) zcptsnw (:,:) = ( MIN( ptair, rt0 ) - rt0 ) * rcpi * tmask(:,:,1) zcptn (:,:) = sst_m * rcp * tmask(:,:,1) ! ! ! ========================== ! DO jl = 1, jpl ! Loop over ice categories ! ! ! ========================== ! DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) zst = ptsu(ji,jj,jl) ! surface temperature of sea-ice [K] zsq = q_sat( zst, pslp(ji,jj), l_ice=.TRUE. ) ! surface saturation specific humidity when ice present zsipt = theta_exner( zst, pslp(ji,jj) ) ! potential sea-ice surface temperature [K] ! ----------------------------! ! I Radiative FLUXES ! ! ----------------------------! ! Short Wave (sw) qsr_ice(ji,jj,jl) = zztmp * ( 1. - palb(ji,jj,jl) ) * qsr(ji,jj) ! Long Wave (lw) zst3 = zst * zst * zst z_qlw(ji,jj,jl) = emiss_i * ( pdqlw(ji,jj) - stefan * zst * zst3 ) * tmask(ji,jj,1) ! lw sensitivity z_dqlw(ji,jj,jl) = zcoef_dqlw * zst3 ! ----------------------------! ! II Turbulent FLUXES ! ! ----------------------------! ! ... turbulent heat fluxes with Ch_ice recalculated in blk_ice_1 ! Common term in bulk F. equations... zzblk = rhoa(ji,jj) * wndm_ice(ji,jj) ! Sensible Heat zztmp1 = zzblk * rCp_air * Ch_ice(ji,jj) z_qsb (ji,jj,jl) = zztmp1 * (zsipt - theta_zu_i(ji,jj)) z_dqsb(ji,jj,jl) = zztmp1 ! ==> Qsens sensitivity (Dqsb_ice/Dtn_ice) ! Latent Heat zztmp1 = zzblk * rLsub * Ce_ice(ji,jj) qla_ice(ji,jj,jl) = MAX( zztmp1 * (zsq - q_zu_i(ji,jj)) , 0._wp ) ! #LB: only sublimation (and not condensation) ??? IF(qla_ice(ji,jj,jl)>0._wp) dqla_ice(ji,jj,jl) = zztmp1*dq_sat_dt_ice(zst, pslp(ji,jj)) ! ==> Qlat sensitivity (dQlat/dT) ! !#LB: dq_sat_dt_ice() in "sbc_phy.F90" !#LB: without this unjustified "condensation sensure": !qla_ice( ji,jj,jl) = zztmp1 * (zsq - q_zu_i(ji,jj)) !dqla_ice(ji,jj,jl) = zztmp1 * dq_sat_dt_ice(zst, pslp(ji,jj)) ! ==> Qlat sensitivity (dQlat/dT) ! ----------------------------! ! III Total FLUXES ! ! ----------------------------! ! Downward Non Solar flux qns_ice (ji,jj,jl) = z_qlw (ji,jj,jl) - z_qsb (ji,jj,jl) - qla_ice (ji,jj,jl) ! Total non solar heat flux sensitivity for ice dqns_ice(ji,jj,jl) = - ( z_dqlw(ji,jj,jl) + z_dqsb(ji,jj,jl) + dqla_ice(ji,jj,jl) ) !#LB: correct signs ???? END_2D ! END DO ! tprecip(:,:) = pprec(:,:) * rn_pfac * tmask(:,:,1) ! total precipitation [kg/m2/s] sprecip(:,:) = psnow(:,:) * rn_pfac * tmask(:,:,1) ! solid precipitation [kg/m2/s] CALL iom_put( 'snowpre', sprecip ) ! Snow precipitation CALL iom_put( 'precip' , tprecip ) ! Total precipitation ! --- evaporation --- ! z1_rLsub = 1._wp / rLsub evap_ice (:,:,:) = rn_efac * qla_ice (:,:,:) * z1_rLsub ! sublimation devap_ice(:,:,:) = rn_efac * dqla_ice(:,:,:) * z1_rLsub ! d(sublimation)/dT zevap (:,:) = emp(:,:) + tprecip(:,:) ! evaporation over ocean !LB: removed rn_efac here, correct??? ! --- evaporation minus precipitation --- ! zsnw(:,:) = 0._wp CALL ice_var_snwblow( (1.-at_i_b(:,:)), zsnw ) ! snow distribution over ice after wind blowing emp_oce(:,:) = ( 1._wp - at_i_b(:,:) ) * zevap(:,:) - ( tprecip(:,:) - sprecip(:,:) ) - sprecip(:,:) * (1._wp - zsnw ) emp_ice(:,:) = SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) - sprecip(:,:) * zsnw emp_tot(:,:) = emp_oce(:,:) + emp_ice(:,:) ! --- heat flux associated with emp --- ! qemp_oce(:,:) = - ( 1._wp - at_i_b(:,:) ) * zevap(:,:) * zcptn(:,:) & ! evap at sst & + ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) & ! liquid precip at Tair & + sprecip(:,:) * ( 1._wp - zsnw ) * ( zcptsnw (:,:) - rLfus ) ! solid precip at min(Tair,Tsnow) qemp_ice(:,:) = sprecip(:,:) * zsnw * ( zcptsnw (:,:) - rLfus ) ! solid precip (only) ! --- total solar and non solar fluxes --- ! qns_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qns_oce(:,:) + SUM( a_i_b(:,:,:) * qns_ice(:,:,:), dim=3 ) & & + qemp_ice(:,:) + qemp_oce(:,:) qsr_tot(:,:) = ( 1._wp - at_i_b(:,:) ) * qsr_oce(:,:) + SUM( a_i_b(:,:,:) * qsr_ice(:,:,:), dim=3 ) ! --- heat content of precip over ice in J/m3 (to be used in 1D-thermo) --- ! qprec_ice(:,:) = rhos * ( zcptsnw(:,:) - rLfus ) ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- DO jl = 1, jpl qevap_ice(:,:,jl) = 0._wp ! should be -evap_ice(:,:,jl)*( ( Tice - rt0 ) * rcpi * tmask(:,:,1) ) ! ! But we do not have Tice => consider it at 0degC => evap=0 END DO ! --- shortwave radiation transmitted thru the surface scattering layer (W/m2) --- ! IF( nn_qtrice == 0 ) THEN ! formulation derived from Grenfell and Maykut (1977), where transmission rate ! 1) depends on cloudiness ! 2) is 0 when there is any snow ! 3) tends to 1 for thin ice ztri(:,:) = 0.18 * ( 1.0 - cloud_fra(:,:) ) + 0.35 * cloud_fra(:,:) ! surface transmission when hi>10cm DO jl = 1, jpl WHERE ( phs(:,:,jl) <= 0._wp .AND. phi(:,:,jl) < 0.1_wp ) ! linear decrease from hi=0 to 10cm qtr_ice_top(:,:,jl) = qsr_ice(:,:,jl) * ( ztri(:,:) + ( 1._wp - ztri(:,:) ) * ( 1._wp - phi(:,:,jl) * 10._wp ) ) ELSEWHERE( phs(:,:,jl) <= 0._wp .AND. phi(:,:,jl) >= 0.1_wp ) ! constant (ztri) when hi>10cm qtr_ice_top(:,:,jl) = qsr_ice(:,:,jl) * ztri(:,:) ELSEWHERE ! zero when hs>0 qtr_ice_top(:,:,jl) = 0._wp END WHERE ENDDO ELSEIF( nn_qtrice == 1 ) THEN ! formulation is derived from the thesis of M. Lebrun (2019). ! It represents the best fit using several sets of observations ! It comes with snow conductivities adapted to freezing/melting conditions (see icethd_zdf_bl99.F90) qtr_ice_top(:,:,:) = 0.3_wp * qsr_ice(:,:,:) ENDIF ! IF( iom_use('evap_ao_cea') .OR. iom_use('hflx_evap_cea') ) THEN CALL iom_put( 'evap_ao_cea' , zevap(:,:) * ( 1._wp - at_i_b(:,:) ) * tmask(:,:,1) ) ! ice-free oce evap (cell average) CALL iom_put( 'hflx_evap_cea', zevap(:,:) * ( 1._wp - at_i_b(:,:) ) * tmask(:,:,1) * zcptn(:,:) ) ! heat flux from evap (cell average) ENDIF IF( iom_use('rain') .OR. iom_use('rain_ao_cea') .OR. iom_use('hflx_rain_cea') ) THEN CALL iom_put( 'rain' , tprecip(:,:) - sprecip(:,:) ) ! liquid precipitation CALL iom_put( 'rain_ao_cea' , ( tprecip(:,:) - sprecip(:,:) ) * ( 1._wp - at_i_b(:,:) ) ) ! liquid precipitation over ocean (cell average) CALL iom_put( 'hflx_rain_cea', ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) ) ! heat flux from rain (cell average) ENDIF IF( iom_use('snow_ao_cea') .OR. iom_use('snow_ai_cea') .OR. & & iom_use('hflx_snow_cea') .OR. iom_use('hflx_snow_ao_cea') .OR. iom_use('hflx_snow_ai_cea') ) THEN CALL iom_put( 'snow_ao_cea' , sprecip(:,:) * ( 1._wp - zsnw(:,:) ) ) ! Snow over ice-free ocean (cell average) CALL iom_put( 'snow_ai_cea' , sprecip(:,:) * zsnw(:,:) ) ! Snow over sea-ice (cell average) CALL iom_put( 'hflx_snow_cea' , sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) ) ! heat flux from snow (cell average) CALL iom_put( 'hflx_snow_ao_cea', sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) * ( 1._wp - zsnw(:,:) ) ) ! heat flux from snow (over ocean) CALL iom_put( 'hflx_snow_ai_cea', sprecip(:,:) * ( zcptsnw(:,:) - rLfus ) * zsnw(:,:) ) ! heat flux from snow (over ice) ENDIF IF( iom_use('hflx_prec_cea') ) THEN ! heat flux from precip (cell average) CALL iom_put('hflx_prec_cea' , sprecip(:,:) * ( zcptsnw (:,:) - rLfus ) & & + ( tprecip(:,:) - sprecip(:,:) ) * zcptrain(:,:) ) ENDIF IF( iom_use('subl_ai_cea') .OR. iom_use('hflx_subl_cea') ) THEN CALL iom_put( 'subl_ai_cea' , SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) * tmask(:,:,1) ) ! Sublimation over sea-ice (cell average) CALL iom_put( 'hflx_subl_cea', SUM( a_i_b(:,:,:) * qevap_ice(:,:,:), dim=3 ) * tmask(:,:,1) ) ! Heat flux from sublimation (cell average) ENDIF ! IF(sn_cfctl%l_prtctl) THEN CALL prt_ctl(tab3d_1=qla_ice , clinfo1=' blk_ice: qla_ice : ', tab3d_2=z_qsb , clinfo2=' z_qsb : ', kdim=jpl) CALL prt_ctl(tab3d_1=z_qlw , clinfo1=' blk_ice: z_qlw : ', tab3d_2=dqla_ice, clinfo2=' dqla_ice : ', kdim=jpl) CALL prt_ctl(tab3d_1=z_dqsb , clinfo1=' blk_ice: z_dqsb : ', tab3d_2=z_dqlw , clinfo2=' z_dqlw : ', kdim=jpl) CALL prt_ctl(tab3d_1=dqns_ice, clinfo1=' blk_ice: dqns_ice : ', tab3d_2=qsr_ice , clinfo2=' qsr_ice : ', kdim=jpl) CALL prt_ctl(tab3d_1=ptsu , clinfo1=' blk_ice: ptsu : ', tab3d_2=qns_ice , clinfo2=' qns_ice : ', kdim=jpl) CALL prt_ctl(tab2d_1=tprecip , clinfo1=' blk_ice: tprecip : ', tab2d_2=sprecip , clinfo2=' sprecip : ') ENDIF !#LB: ! air-ice heat flux components that are not written from ice_stp()@icestp.F90: IF( iom_use('qla_ice') ) CALL iom_put( 'qla_ice', SUM( - qla_ice * a_i_b, dim=3 ) ) !#LB: sign consistent with what's done for ocean IF( iom_use('qsb_ice') ) CALL iom_put( 'qsb_ice', SUM( - z_qsb * a_i_b, dim=3 ) ) !#LB: ==> negative => loss of heat for sea-ice IF( iom_use('qlw_ice') ) CALL iom_put( 'qlw_ice', SUM( z_qlw * a_i_b, dim=3 ) ) !#LB. END SUBROUTINE blk_ice_2 SUBROUTINE blk_ice_qcn( ld_virtual_itd, ptsu, ptb, phs, phi ) !!--------------------------------------------------------------------- !! *** ROUTINE blk_ice_qcn *** !! !! ** Purpose : Compute surface temperature and snow/ice conduction flux !! to force sea ice / snow thermodynamics !! in the case conduction flux is emulated !! !! ** Method : compute surface energy balance assuming neglecting heat storage !! following the 0-layer Semtner (1976) approach !! !! ** Outputs : - ptsu : sea-ice / snow surface temperature (K) !! - qcn_ice : surface inner conduction flux (W/m2) !! !!--------------------------------------------------------------------- LOGICAL , INTENT(in ) :: ld_virtual_itd ! single-category option REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: ptsu ! sea ice / snow surface temperature REAL(wp), DIMENSION(:,:) , INTENT(in ) :: ptb ! sea ice base temperature REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phs ! snow thickness REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phi ! sea ice thickness ! INTEGER , PARAMETER :: nit = 10 ! number of iterations REAL(wp), PARAMETER :: zepsilon = 0.1_wp ! characteristic thickness for enhanced conduction ! INTEGER :: ji, jj, jl ! dummy loop indices INTEGER :: iter ! local integer REAL(wp) :: zfac, zfac2, zfac3 ! local scalars REAL(wp) :: zkeff_h, ztsu, ztsu0 ! REAL(wp) :: zqc, zqnet ! REAL(wp) :: zhe, zqa0 ! REAL(wp), DIMENSION(jpi,jpj,jpl) :: zgfac ! enhanced conduction factor !!--------------------------------------------------------------------- ! -------------------------------------! ! I Enhanced conduction factor ! ! -------------------------------------! ! Emulates the enhancement of conduction by unresolved thin ice (ld_virtual_itd = T) ! Fichefet and Morales Maqueda, JGR 1997 ! zgfac(:,:,:) = 1._wp IF( ld_virtual_itd ) THEN ! zfac = 1._wp / ( rn_cnd_s + rcnd_i ) zfac2 = EXP(1._wp) * 0.5_wp * zepsilon zfac3 = 2._wp / zepsilon ! DO jl = 1, jpl DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) zhe = ( rn_cnd_s * phi(ji,jj,jl) + rcnd_i * phs(ji,jj,jl) ) * zfac ! Effective thickness IF( zhe >= zfac2 ) zgfac(ji,jj,jl) = MIN( 2._wp, 0.5_wp * ( 1._wp + LOG( zhe * zfac3 ) ) ) ! Enhanced conduction factor END_2D END DO ! ENDIF ! -------------------------------------------------------------! ! II Surface temperature and conduction flux ! ! -------------------------------------------------------------! ! zfac = rcnd_i * rn_cnd_s ! DO jl = 1, jpl DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! zkeff_h = zfac * zgfac(ji,jj,jl) / & ! Effective conductivity of the snow-ice system divided by thickness & ( rcnd_i * phs(ji,jj,jl) + rn_cnd_s * MAX( 0.01, phi(ji,jj,jl) ) ) ztsu = ptsu(ji,jj,jl) ! Store current iteration temperature ztsu0 = ptsu(ji,jj,jl) ! Store initial surface temperature zqa0 = qsr_ice(ji,jj,jl) - qtr_ice_top(ji,jj,jl) + qns_ice(ji,jj,jl) ! Net initial atmospheric heat flux ! DO iter = 1, nit ! --- Iterative loop zqc = zkeff_h * ( ztsu - ptb(ji,jj) ) ! Conduction heat flux through snow-ice system (>0 downwards) zqnet = zqa0 + dqns_ice(ji,jj,jl) * ( ztsu - ptsu(ji,jj,jl) ) - zqc ! Surface energy budget ztsu = ztsu - zqnet / ( dqns_ice(ji,jj,jl) - zkeff_h ) ! Temperature update END DO ! ptsu (ji,jj,jl) = MIN( rt0, ztsu ) qcn_ice(ji,jj,jl) = zkeff_h * ( ptsu(ji,jj,jl) - ptb(ji,jj) ) qns_ice(ji,jj,jl) = qns_ice(ji,jj,jl) + dqns_ice(ji,jj,jl) * ( ptsu(ji,jj,jl) - ztsu0 ) qml_ice(ji,jj,jl) = ( qsr_ice(ji,jj,jl) - qtr_ice_top(ji,jj,jl) + qns_ice(ji,jj,jl) - qcn_ice(ji,jj,jl) ) & & * MAX( 0._wp , SIGN( 1._wp, ptsu(ji,jj,jl) - rt0 ) ) ! --- Diagnose the heat loss due to changing non-solar flux (as in icethd_zdf_bl99) --- ! hfx_err_dif(ji,jj) = hfx_err_dif(ji,jj) - ( dqns_ice(ji,jj,jl) * ( ptsu(ji,jj,jl) - ztsu0 ) ) * a_i_b(ji,jj,jl) END_2D ! END DO ! END SUBROUTINE blk_ice_qcn #endif !!====================================================================== END MODULE sbcblk