MODULE sbcrnf !!====================================================================== !! *** MODULE sbcrnf *** !! Ocean forcing: river runoff !!===================================================================== !! History : OPA ! 2000-11 (R. Hordoir, E. Durand) NetCDF FORMAT !! NEMO 1.0 ! 2002-09 (G. Madec) F90: Free form and module !! 3.0 ! 2006-07 (G. Madec) Surface module !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put !! 3.3 ! 2010-10 (R. Furner, G. Madec) runoff distributed over ocean levels !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_rnf : monthly runoffs read in a NetCDF file !! sbc_rnf_init : runoffs initialisation !! rnf_mouth : set river mouth mask !!---------------------------------------------------------------------- USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE sbc_oce ! surface boundary condition variables USE eosbn2 ! Equation Of State USE closea, ONLY: l_clo_rnf, clo_rnf ! closed seas ! USE in_out_manager ! I/O manager USE fldread ! read input field at current time step USE iom ! I/O module USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC sbc_rnf ! called in sbcmod module PUBLIC sbc_rnf_div ! called in divhor module PUBLIC sbc_rnf_alloc ! called in sbcmod module PUBLIC sbc_rnf_init ! called in sbcmod module ! !!* namsbc_rnf namelist * CHARACTER(len=100) :: cn_dir !: Root directory for location of rnf files LOGICAL , PUBLIC :: ln_rnf_depth !: depth river runoffs attribute specified in a file LOGICAL :: ln_rnf_depth_ini !: depth river runoffs computed at the initialisation REAL(wp) :: rn_rnf_max !: maximum value of the runoff climatologie (ln_rnf_depth_ini =T) REAL(wp) :: rn_dep_max !: depth over which runoffs is spread (ln_rnf_depth_ini =T) INTEGER :: nn_rnf_depth_file !: create (=1) a runoff depth file or not (=0) LOGICAL , PUBLIC :: ln_rnf_icb !: iceberg flux is specified in a file LOGICAL :: ln_rnf_tem !: temperature river runoffs attribute specified in a file LOGICAL , PUBLIC :: ln_rnf_sal !: salinity river runoffs attribute specified in a file TYPE(FLD_N) , PUBLIC :: sn_rnf !: information about the runoff file to be read TYPE(FLD_N) :: sn_cnf !: information about the runoff mouth file to be read TYPE(FLD_N) :: sn_i_rnf !: information about the iceberg flux file to be read TYPE(FLD_N) :: sn_s_rnf !: information about the salinities of runoff file to be read TYPE(FLD_N) :: sn_t_rnf !: information about the temperatures of runoff file to be read TYPE(FLD_N) :: sn_dep_rnf !: information about the depth which river inflow affects LOGICAL , PUBLIC :: ln_rnf_mouth !: specific treatment in mouths vicinity REAL(wp) :: rn_hrnf !: runoffs, depth over which enhanced vertical mixing is used REAL(wp) , PUBLIC :: rn_avt_rnf !: runoffs, value of the additional vertical mixing coef. [m2/s] REAL(wp) , PUBLIC :: rn_rfact !: multiplicative factor for runoff LOGICAL , PUBLIC :: l_rnfcpl = .false. !: runoffs recieved from oasis INTEGER , PUBLIC :: nkrnf = 0 !: nb of levels over which Kz is increased at river mouths REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnfmsk !: river mouth mask (hori.) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:) :: rnfmsk_z !: river mouth mask (vert.) REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: h_rnf !: depth of runoff in m INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nk_rnf !: depth of runoff in model levels REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: rnf_tsc_b, rnf_tsc !: before and now T & S runoff contents [K.m/s & PSU.m/s] TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_rnf ! structure: river runoff (file information, fields read) TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_i_rnf ! structure: iceberg flux (file information, fields read) TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_s_rnf ! structure: river runoff salinity (file information, fields read) TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_t_rnf ! structure: river runoff temperature (file information, fields read) !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: sbcrnf.F90 15190 2021-08-13 12:52:50Z gsamson $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION sbc_rnf_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE sbc_rnf_alloc *** !!---------------------------------------------------------------------- ALLOCATE( rnfmsk(jpi,jpj) , rnfmsk_z(jpk) , & & h_rnf (jpi,jpj) , nk_rnf (jpi,jpj) , & & rnf_tsc_b(jpi,jpj,jpts) , rnf_tsc (jpi,jpj,jpts) , STAT=sbc_rnf_alloc ) ! CALL mpp_sum ( 'sbcrnf', sbc_rnf_alloc ) IF( sbc_rnf_alloc > 0 ) CALL ctl_warn('sbc_rnf_alloc: allocation of arrays failed') END FUNCTION sbc_rnf_alloc SUBROUTINE sbc_rnf( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE sbc_rnf *** !! !! ** Purpose : Introduce a climatological run off forcing !! !! ** Method : Set each river mouth with a monthly climatology !! provided from different data. !! CAUTION : upward water flux, runoff forced to be < 0 !! !! ** Action : runoff updated runoff field at time-step kt !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! ocean time step ! INTEGER :: ji, jj ! dummy loop indices INTEGER :: z_err = 0 ! dummy integer for error handling !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpi,jpj) :: ztfrz ! freezing point used for temperature correction ! ! ! !-------------------! ! ! Update runoff ! ! !-------------------! ! ! IF( .NOT. l_rnfcpl ) THEN CALL fld_read ( kt, nn_fsbc, sf_rnf ) ! Read Runoffs data and provide it at kt ( runoffs + iceberg ) IF( ln_rnf_icb ) CALL fld_read ( kt, nn_fsbc, sf_i_rnf ) ! idem for iceberg flux if required ENDIF IF( ln_rnf_tem ) CALL fld_read ( kt, nn_fsbc, sf_t_rnf ) ! idem for runoffs temperature if required IF( ln_rnf_sal ) CALL fld_read ( kt, nn_fsbc, sf_s_rnf ) ! idem for runoffs salinity if required ! IF( MOD( kt - 1, nn_fsbc ) == 0 ) THEN ! IF( .NOT. l_rnfcpl ) THEN rnf(:,:) = rn_rfact * ( sf_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt IF( ln_rnf_icb ) THEN fwficb(:,:) = rn_rfact * ( sf_i_rnf(1)%fnow(:,:,1) ) * tmask(:,:,1) ! updated runoff value at time step kt rnf(:,:) = rnf(:,:) + fwficb(:,:) qns(:,:) = qns(:,:) - fwficb(:,:) * rLfus !!qns_tot(:,:) = qns_tot(:,:) - fwficb(:,:) * rLfus !!qns_oce(:,:) = qns_oce(:,:) - fwficb(:,:) * rLfus CALL iom_put( 'iceberg_cea' , fwficb(:,:) ) ! output iceberg flux CALL iom_put( 'hflx_icb_cea' , -fwficb(:,:) * rLfus ) ! output Heat Flux into Sea Water due to Iceberg Thermodynamics --> ENDIF ENDIF ! ! ! set temperature & salinity content of runoffs IF( ln_rnf_tem ) THEN ! use runoffs temperature data rnf_tsc(:,:,jp_tem) = ( sf_t_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0 CALL eos_fzp( sss_m(:,:), ztfrz(:,:) ) WHERE( sf_t_rnf(1)%fnow(:,:,1) == -999._wp ) ! if missing data value use SST as runoffs temperature rnf_tsc(:,:,jp_tem) = sst_m(:,:) * rnf(:,:) * r1_rho0 END WHERE ELSE ! use SST as runoffs temperature !CEOD River is fresh water so must at least be 0 unless we consider ice rnf_tsc(:,:,jp_tem) = MAX( sst_m(:,:), 0.0_wp ) * rnf(:,:) * r1_rho0 ENDIF ! ! use runoffs salinity data IF( ln_rnf_sal ) rnf_tsc(:,:,jp_sal) = ( sf_s_rnf(1)%fnow(:,:,1) ) * rnf(:,:) * r1_rho0 ! ! else use S=0 for runoffs (done one for all in the init) CALL iom_put( 'runoffs' , rnf(:,:) ) ! output runoff mass flux IF( iom_use('hflx_rnf_cea') ) CALL iom_put( 'hflx_rnf_cea', rnf_tsc(:,:,jp_tem) * rho0 * rcp ) ! output runoff sensible heat (W/m2) IF( iom_use('sflx_rnf_cea') ) CALL iom_put( 'sflx_rnf_cea', rnf_tsc(:,:,jp_sal) * rho0 ) ! output runoff salt flux (g/m2/s) ENDIF ! ! ! ---------------------------------------- ! IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 ! ! ! ---------------------------------------- ! IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN !* Restart: read in restart file IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields red in the restart file', lrxios CALL iom_get( numror, jpdom_auto, 'rnf_b' , rnf_b ) ! before runoff CALL iom_get( numror, jpdom_auto, 'rnf_hc_b', rnf_tsc_b(:,:,jp_tem) ) ! before heat content of runoff CALL iom_get( numror, jpdom_auto, 'rnf_sc_b', rnf_tsc_b(:,:,jp_sal) ) ! before salinity content of runoff ELSE !* no restart: set from nit000 values IF(lwp) WRITE(numout,*) ' nit000-1 runoff forcing fields set to nit000' rnf_b (:,: ) = rnf (:,: ) rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:) ENDIF ENDIF ! ! ---------------------------------------- ! IF( lrst_oce ) THEN ! Write in the ocean restart file ! ! ! ---------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbcrnf : runoff forcing fields written in ocean restart file ', & & 'at it= ', kt,' date= ', ndastp IF(lwp) WRITE(numout,*) '~~~~' CALL iom_rstput( kt, nitrst, numrow, 'rnf_b' , rnf ) CALL iom_rstput( kt, nitrst, numrow, 'rnf_hc_b', rnf_tsc(:,:,jp_tem) ) CALL iom_rstput( kt, nitrst, numrow, 'rnf_sc_b', rnf_tsc(:,:,jp_sal) ) ENDIF ! END SUBROUTINE sbc_rnf SUBROUTINE sbc_rnf_div( phdivn, Kmm ) !!---------------------------------------------------------------------- !! *** ROUTINE sbc_rnf *** !! !! ** Purpose : update the horizontal divergence with the runoff inflow !! !! ** Method : !! CAUTION : rnf is positive (inflow) decreasing the !! divergence and expressed in m/s !! !! ** Action : phdivn decreased by the runoff inflow !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: Kmm ! ocean time level index REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phdivn ! horizontal divergence !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zfact ! local scalar !!---------------------------------------------------------------------- ! zfact = 0.5_wp ! IF( ln_rnf_depth .OR. ln_rnf_depth_ini ) THEN !== runoff distributed over several levels ==! IF( ln_linssh ) THEN !* constant volume case : just apply the runoff input flow DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) DO jk = 1, nk_rnf(ji,jj) phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj) END DO END_2D ELSE !* variable volume case DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls ) ! update the depth over which runoffs are distributed h_rnf(ji,jj) = 0._wp DO jk = 1, nk_rnf(ji,jj) ! recalculates h_rnf to be the depth in metres h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm) ! to the bottom of the relevant grid box END DO END_2D DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! apply the runoff input flow DO jk = 1, nk_rnf(ji,jj) phdivn(ji,jj,jk) = phdivn(ji,jj,jk) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / h_rnf(ji,jj) END DO END_2D ENDIF ELSE !== runoff put only at the surface ==! DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls ) h_rnf (ji,jj) = e3t(ji,jj,1,Kmm) ! update h_rnf to be depth of top box END_2D DO_2D_OVR( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) phdivn(ji,jj,1) = phdivn(ji,jj,1) - ( rnf(ji,jj) + rnf_b(ji,jj) ) * zfact * r1_rho0 / e3t(ji,jj,1,Kmm) END_2D ENDIF ! END SUBROUTINE sbc_rnf_div SUBROUTINE sbc_rnf_init( Kmm ) !!---------------------------------------------------------------------- !! *** ROUTINE sbc_rnf_init *** !! !! ** Purpose : Initialisation of the runoffs if (ln_rnf=T) !! !! ** Method : - read the runoff namsbc_rnf namelist !! !! ** Action : - read parameters !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: Kmm ! ocean time level index CHARACTER(len=32) :: rn_dep_file ! runoff file name INTEGER :: ji, jj, jk, jm ! dummy loop indices INTEGER :: ierror, inum ! temporary integer INTEGER :: ios ! Local integer output status for namelist read INTEGER :: nbrec ! temporary integer REAL(wp) :: zacoef REAL(wp), DIMENSION(jpi,jpj,2) :: zrnfcl !! NAMELIST/namsbc_rnf/ cn_dir , ln_rnf_depth, ln_rnf_tem, ln_rnf_sal, ln_rnf_icb, & & sn_rnf, sn_cnf , sn_i_rnf, sn_s_rnf , sn_t_rnf , sn_dep_rnf, & & ln_rnf_mouth , rn_hrnf , rn_avt_rnf, rn_rfact, & & ln_rnf_depth_ini , rn_dep_max , rn_rnf_max, nn_rnf_depth_file !!---------------------------------------------------------------------- ! ! !== allocate runoff arrays IF( sbc_rnf_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'sbc_rnf_alloc : unable to allocate arrays' ) ! ! ! ============ ! ! Namelist ! ! ============ ! READ ( numnam_ref, namsbc_rnf, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in reference namelist' ) READ ( numnam_cfg, namsbc_rnf, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namsbc_rnf in configuration namelist' ) IF(lwm) WRITE ( numond, namsbc_rnf ) ! IF( .NOT. ln_rnf ) THEN ! no specific treatment in vicinity of river mouths ln_rnf_mouth = .FALSE. ! default definition needed for example by sbc_ssr or by tra_adv_muscl ln_rnf_tem = .FALSE. ln_rnf_sal = .FALSE. ln_rnf_icb = .FALSE. nkrnf = 0 rnf (:,:) = 0.0_wp rnf_b (:,:) = 0.0_wp rnfmsk (:,:) = 0.0_wp rnfmsk_z(:) = 0.0_wp RETURN ENDIF ! ! ! Control print IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_rnf_init : runoff ' WRITE(numout,*) '~~~~~~~~~~~~ ' WRITE(numout,*) ' Namelist namsbc_rnf' WRITE(numout,*) ' specific river mouths treatment ln_rnf_mouth = ', ln_rnf_mouth WRITE(numout,*) ' river mouth additional Kz rn_avt_rnf = ', rn_avt_rnf WRITE(numout,*) ' depth of river mouth additional mixing rn_hrnf = ', rn_hrnf WRITE(numout,*) ' multiplicative factor for runoff rn_rfact = ', rn_rfact ENDIF ! ! ================== ! ! Type of runoff ! ! ================== ! IF( .NOT. l_rnfcpl ) THEN ALLOCATE( sf_rnf(1), STAT=ierror ) ! Create sf_rnf structure (runoff inflow) IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> runoffs inflow read in a file' IF( ierror > 0 ) THEN CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_rnf structure' ) ; RETURN ENDIF ALLOCATE( sf_rnf(1)%fnow(jpi,jpj,1) ) IF( sn_rnf%ln_tint ) ALLOCATE( sf_rnf(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill( sf_rnf, (/ sn_rnf /), cn_dir, 'sbc_rnf_init', 'read runoffs data', 'namsbc_rnf', no_print ) ! IF( ln_rnf_icb ) THEN ! Create (if required) sf_i_rnf structure IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' iceberg flux read in a file' ALLOCATE( sf_i_rnf(1), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_i_rnf structure' ) ; RETURN ENDIF ALLOCATE( sf_i_rnf(1)%fnow(jpi,jpj,1) ) IF( sn_i_rnf%ln_tint ) ALLOCATE( sf_i_rnf(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill (sf_i_rnf, (/ sn_i_rnf /), cn_dir, 'sbc_rnf_init', 'read iceberg flux data', 'namsbc_rnf' ) ELSE fwficb(:,:) = 0._wp ENDIF ENDIF ! IF( ln_rnf_tem ) THEN ! Create (if required) sf_t_rnf structure IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> runoffs temperatures read in a file' ALLOCATE( sf_t_rnf(1), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_t_rnf structure' ) ; RETURN ENDIF ALLOCATE( sf_t_rnf(1)%fnow(jpi,jpj,1) ) IF( sn_t_rnf%ln_tint ) ALLOCATE( sf_t_rnf(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill (sf_t_rnf, (/ sn_t_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff temperature data', 'namsbc_rnf', no_print ) ENDIF ! IF( ln_rnf_sal ) THEN ! Create (if required) sf_s_rnf and sf_t_rnf structures IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> runoffs salinities read in a file' ALLOCATE( sf_s_rnf(1), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'sbc_rnf_init: unable to allocate sf_s_rnf structure' ) ; RETURN ENDIF ALLOCATE( sf_s_rnf(1)%fnow(jpi,jpj,1) ) IF( sn_s_rnf%ln_tint ) ALLOCATE( sf_s_rnf(1)%fdta(jpi,jpj,1,2) ) CALL fld_fill (sf_s_rnf, (/ sn_s_rnf /), cn_dir, 'sbc_rnf_init', 'read runoff salinity data', 'namsbc_rnf', no_print ) ENDIF ! IF( ln_rnf_depth ) THEN ! depth of runoffs set from a file IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> runoffs depth read in a file' rn_dep_file = TRIM( cn_dir )//TRIM( sn_dep_rnf%clname ) IF( .NOT. sn_dep_rnf%ln_clim ) THEN ; WRITE(rn_dep_file, '(a,"_y",i4)' ) TRIM( rn_dep_file ), nyear ! add year IF( sn_dep_rnf%clftyp == 'monthly' ) WRITE(rn_dep_file, '(a,"m",i2)' ) TRIM( rn_dep_file ), nmonth ! add month ENDIF CALL iom_open ( rn_dep_file, inum ) ! open file CALL iom_get ( inum, jpdom_global, sn_dep_rnf%clvar, h_rnf, kfill = jpfillcopy ) ! read the river mouth. no 0 on halos! CALL iom_close( inum ) ! close file ! nk_rnf(:,:) = 0 ! set the number of level over which river runoffs are applied DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) IF( h_rnf(ji,jj) > 0._wp ) THEN jk = 2 DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1 END DO nk_rnf(ji,jj) = jk ELSEIF( h_rnf(ji,jj) == -1._wp ) THEN ; nk_rnf(ji,jj) = 1 ELSEIF( h_rnf(ji,jj) == -999._wp ) THEN ; nk_rnf(ji,jj) = mbkt(ji,jj) ELSE CALL ctl_stop( 'sbc_rnf_init: runoff depth not positive, and not -999 or -1, rnf value in file fort.999' ) WRITE(999,*) 'ji, jj, h_rnf(ji,jj) :', ji, jj, h_rnf(ji,jj) ENDIF END_2D DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth h_rnf(ji,jj) = 0._wp DO jk = 1, nk_rnf(ji,jj) h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm) END DO END_2D ! ELSE IF( ln_rnf_depth_ini ) THEN ! runoffs applied at the surface ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> depth of runoff computed once from max value of runoff' IF(lwp) WRITE(numout,*) ' max value of the runoff climatologie (over global domain) rn_rnf_max = ', rn_rnf_max IF(lwp) WRITE(numout,*) ' depth over which runoffs is spread rn_dep_max = ', rn_dep_max IF(lwp) WRITE(numout,*) ' create (=1) a runoff depth file or not (=0) nn_rnf_depth_file = ', nn_rnf_depth_file CALL iom_open( TRIM( sn_rnf%clname ), inum ) ! open runoff file nbrec = iom_getszuld( inum ) zrnfcl(:,:,1) = 0._wp ! init the max to 0. in 1 DO jm = 1, nbrec CALL iom_get( inum, jpdom_global, TRIM( sn_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2 zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1 END DO CALL iom_close( inum ) ! ! ELIC change ! - the iceberg flux should be taken into account to compute the depth up ! to which the runoff must be distributed vertically ! - the implementation below is not perfect: it selects the maximum runoff ! or iceberg flux (over the records) instead of selecting the maximum ! (over the records) of the sum of the runoff and the iceberg flux ! - since the runoff and the iceberg flux are often not colocated, this is ! not a severe problem ! - in addition, since the runoff and iceberg flux could have different ! number of records, this would be difficult to improve ! IF( ln_rnf_icb ) THEN CALL iom_open( TRIM( sn_i_rnf%clname ), inum ) ! open iceberg flux file nbrec = iom_getszuld( inum ) DO jm = 1, nbrec CALL iom_get( inum, jpdom_global, TRIM( sn_i_rnf%clvar ), zrnfcl(:,:,2), jm ) ! read the value in 2 zrnfcl(:,:,1) = MAXVAL( zrnfcl(:,:,:), DIM=3 ) ! store the maximum value in time in 1 END DO CALL iom_close( inum ) ENDIF ! end ELIC change ! h_rnf(:,:) = 1. ! zacoef = rn_dep_max / rn_rnf_max ! coef of linear relation between runoff and its depth (150m for max of runoff) ! WHERE( zrnfcl(:,:,1) > 0._wp ) h_rnf(:,:) = zacoef * zrnfcl(:,:,1) ! compute depth for all runoffs ! DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! take in account min depth of ocean rn_hmin IF( zrnfcl(ji,jj,1) > 0._wp ) THEN jk = mbkt(ji,jj) h_rnf(ji,jj) = MIN( h_rnf(ji,jj), gdept_0(ji,jj,jk ) ) ENDIF END_2D ! nk_rnf(:,:) = 0 ! number of levels on which runoffs are distributed DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) IF( zrnfcl(ji,jj,1) > 0._wp ) THEN jk = 2 DO WHILE ( jk < mbkt(ji,jj) .AND. gdept_0(ji,jj,jk) < h_rnf(ji,jj) ) ; jk = jk + 1 END DO nk_rnf(ji,jj) = jk ELSE nk_rnf(ji,jj) = 1 ENDIF END_2D ! DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the associated depth h_rnf(ji,jj) = 0._wp DO jk = 1, nk_rnf(ji,jj) h_rnf(ji,jj) = h_rnf(ji,jj) + e3t(ji,jj,jk,Kmm) END DO END_2D ! IF( nn_rnf_depth_file == 1 ) THEN ! save output nb levels for runoff IF(lwp) WRITE(numout,*) ' ==>>> create runoff depht file' CALL iom_open ( TRIM( sn_dep_rnf%clname ), inum, ldwrt = .TRUE. ) CALL iom_rstput( 0, 0, inum, 'rodepth', h_rnf ) CALL iom_close ( inum ) ENDIF ELSE ! runoffs applied at the surface nk_rnf(:,:) = 1 h_rnf (:,:) = e3t(:,:,1,Kmm) ENDIF ! rnf(:,:) = 0._wp ! runoff initialisation rnf_tsc(:,:,:) = 0._wp ! runoffs temperature & salinty contents initilisation ! ! ! ======================== ! ! River mouth vicinity ! ! ======================== ! IF( ln_rnf_mouth ) THEN ! Specific treatment in vicinity of river mouths : ! ! - Increase Kz in surface layers ( rn_hrnf > 0 ) ! ! - set to zero SSS damping (ln_ssr=T) ! ! - mixed upstream-centered (ln_traadv_cen2=T) ! IF( ln_rnf_depth ) CALL ctl_warn( 'sbc_rnf_init: increased mixing turned on but effects may already', & & 'be spread through depth by ln_rnf_depth' ) ! nkrnf = 0 ! Number of level over which Kz increase IF( rn_hrnf > 0._wp ) THEN nkrnf = 2 DO WHILE( nkrnf /= jpkm1 .AND. gdepw_1d(nkrnf+1) < rn_hrnf ) ; nkrnf = nkrnf + 1 END DO IF( ln_sco ) CALL ctl_warn( 'sbc_rnf_init: number of levels over which Kz is increased is computed for zco...' ) ENDIF IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> Specific treatment used in vicinity of river mouths :' IF(lwp) WRITE(numout,*) ' - Increase Kz in surface layers (if rn_hrnf > 0 )' IF(lwp) WRITE(numout,*) ' by ', rn_avt_rnf,' m2/s over ', nkrnf, ' w-levels' IF(lwp) WRITE(numout,*) ' - set to zero SSS damping (if ln_ssr=T)' IF(lwp) WRITE(numout,*) ' - mixed upstream-centered (if ln_traadv_cen2=T)' ! CALL rnf_mouth ! set river mouth mask ! ELSE ! No treatment at river mouths IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' ==>>> No specific treatment at river mouths' rnfmsk (:,:) = 0._wp rnfmsk_z(:) = 0._wp nkrnf = 0 ENDIF ! END SUBROUTINE sbc_rnf_init SUBROUTINE rnf_mouth !!---------------------------------------------------------------------- !! *** ROUTINE rnf_mouth *** !! !! ** Purpose : define the river mouths mask !! !! ** Method : read the river mouth mask (=0/1) in the river runoff !! climatological file. Defined a given vertical structure. !! CAUTION, the vertical structure is hard coded on the !! first 5 levels. !! This fields can be used to: !! - set an upstream advection scheme !! (ln_rnf_mouth=T and ln_traadv_cen2=T) !! - increase vertical on the top nn_krnf vertical levels !! at river runoff input grid point (nn_krnf>=2, see step.F90) !! - set to zero SSS restoring flux at river mouth grid points !! !! ** Action : rnfmsk set to 1 at river runoff input, 0 elsewhere !! rnfmsk_z vertical structure !!---------------------------------------------------------------------- INTEGER :: inum ! temporary integers CHARACTER(len=140) :: cl_rnfile ! runoff file name !!---------------------------------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) ' rnf_mouth : river mouth mask' IF(lwp) WRITE(numout,*) ' ~~~~~~~~~ ' ! cl_rnfile = TRIM( cn_dir )//TRIM( sn_cnf%clname ) IF( .NOT. sn_cnf%ln_clim ) THEN ; WRITE(cl_rnfile, '(a,"_y",i4.4)' ) TRIM( cl_rnfile ), nyear ! add year IF( sn_cnf%clftyp == 'monthly' ) WRITE(cl_rnfile, '(a,"m" ,i2.2)' ) TRIM( cl_rnfile ), nmonth ! add month ENDIF ! ! horizontal mask (read in NetCDF file) CALL iom_open ( cl_rnfile, inum ) ! open file CALL iom_get ( inum, jpdom_global, sn_cnf%clvar, rnfmsk ) ! read the river mouth array CALL iom_close( inum ) ! close file ! IF( l_clo_rnf ) CALL clo_rnf( rnfmsk ) ! closed sea inflow set as river mouth ! rnfmsk_z(:) = 0._wp ! vertical structure rnfmsk_z(1) = 1.0 rnfmsk_z(2) = 1.0 ! ********** rnfmsk_z(3) = 0.5 ! HARD CODED on the 5 first levels rnfmsk_z(4) = 0.25 ! ********** rnfmsk_z(5) = 0.125 ! END SUBROUTINE rnf_mouth !!====================================================================== END MODULE sbcrnf