parameterizations.tex 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416
  1. % set global definitions
  2. %
  3. \newcommand{\D}{\displaystyle}
  4. %
  5. \section{Surface Fluxes and Vertical Diffusion}
  6. \subsection{Surface Fluxes \label{surflux}}
  7. The bulk aerodynamic formulas are used to
  8. parameterize surface
  9. fluxes of zonal and meridional momentum (wind stress)
  10. $F_u$ and
  11. $F_v$,
  12. sensible heat $F_T$ and latent heat $L \, F_q$, where
  13. $F_q$ is the surface flux of moisture and $L$ is the
  14. latent heat of vaporisation $L_v$, or, depending on
  15. temperature, the latent heat of sublimation $L_s$:
  16. \begin{equation}\label{fluxes}
  17. \begin{array}{rcl}
  18. \D F_u & = & \D \rho \, C_m \, |\vec{v}| \, u \\
  19. && \\
  20. \D F_v & = & \D \rho \, C_m \, |\vec{v}| \, v \\
  21. && \\
  22. \D F_T & = & \D c_p \, \rho \, C_h \, |\vec{v}| \,
  23. (\gamma
  24. T
  25. - T_S ) \\
  26. && \\
  27. \D L \, F_q & = & \D L\, \rho \, C_h \, C_w \, |\vec{v}|
  28. \,
  29. (\delta
  30. q - q_S )
  31. \end{array}
  32. \end{equation}
  33. All fluxes are positive
  34. in downward direction. $\rho$ denotes the density,
  35. $c_p$ is the specific
  36. heat for moist air at constant pressure ($c_p= c_{pd} \,
  37. [1+(c_{pv}/c_{pd}-1)\, q]$, where
  38. $c_{pd}$ and $c_{pv}$ are the specific heats at
  39. constant pressure for dry air and water vapor,
  40. respectively). $C_m$ is the drag
  41. coefficient, $C_h$ is the transfer coefficient for heat,
  42. $T_S$ is
  43. the surface temperature, $q_S$ is the surface specific
  44. humidity
  45. and $|\vec{v}|$ is the absolute value of the horizontal
  46. velocity at the lowermost level with a prescribed minimum
  47. (default= 1 m/s) to avoid numerical problems.
  48. The wetness factor
  49. $C_w$
  50. accounts
  51. for different evaporation efficiencies due to surface
  52. characteristics (Section \ref{hydro}). $u$, $v$,
  53. $T$ and $q$ are the zonal and meridional wind
  54. components, the
  55. temperature and the specific humidity, respectively,
  56. of the lowermost model level. The factors $\gamma$
  57. and ${\delta}$ are used to relate the model quantities
  58. to
  59. the respective near surface
  60. values. $\delta$ is set to 1 and $\gamma$ is set to
  61. give a potential temperature:
  62. \begin{equation}\label{gamma}
  63. \gamma = \left(\frac{p_S}{p}\right)^{\frac{R_d}{c_{pd}}}
  64. \end{equation}
  65. where p is the pressure of the lowermost
  66. model level, $p_S$ is the surface pressure and $R_d$
  67. is the gas constant for dry air.
  68. While $\gamma$, $\rho$,
  69. $C_m$, $C_h$,
  70. $|\vec{v}|$,
  71. $T_S$ and $q_S$ apply to time level $t - \Delta t$,
  72. values
  73. for $u^{t+ \Delta t}$, $v^{t+ \Delta t}$, $T^{t+ \Delta
  74. t}$
  75. and $q^{t+ \Delta t}$ are computed implicitly
  76. from the discretized tendency equations:
  77. \begin{equation}
  78. \begin{array}{rcccl}
  79. \D \frac{u^{t+\Delta t}-u^{t-\Delta t}}{2 \Delta
  80. t} & = & \D -
  81. \,
  82. \frac{1}{\rho \, \Delta z}\, F_u^{t+\Delta t} & = & \D
  83. - \,
  84. \frac
  85. {g \, \rho \, C_m \, |\vec{v}|}{p_S \, \Delta \sigma} \,
  86. u^{t +
  87. \Delta t} \\
  88. &&&& \\
  89. \D \frac{v^{t+\Delta t}-v^{t-\Delta t}}{2 \Delta t} & =
  90. &
  91. \D
  92. - \,
  93. \frac{1}{\rho \, \Delta z}\, F_v^{t+\Delta t} & = & \D
  94. - \,
  95. \frac
  96. {g \, \rho \, C_m \, |\vec{v}|}{p_S \, \Delta \sigma} \,
  97. v^{t +
  98. \Delta t} \\
  99. &&&& \\
  100. \D \frac{T^{t+\Delta t}-T^{t-\Delta t}}{2 \Delta t} &
  101. = &
  102. \D
  103. -\,
  104. \frac{1}{c_p \, \rho \, \Delta z} \, F_T^{t+\Delta t} &
  105. = & \D -
  106. \,
  107. \frac{g \, \rho \, C_h \, |\vec{v}|} {p_S \, \Delta
  108. \sigma} \,
  109. (\gamma T^{t + \Delta t} - T_S) \\
  110. &&&& \\
  111. \D \frac{q^{t+\Delta t}-q^{t-\Delta t}}{2 \Delta t} & =
  112. &
  113. \D -
  114. \,
  115. \frac{1}{\rho \, \Delta z} \, F_q^{t+\Delta t}& = & \D
  116. - \,
  117. \frac{g \, \rho \, C_h \, C_w \, |\vec{v}|} {p_S \, \Delta
  118. \sigma} \,
  119. (\delta q^{t + \Delta t} - q_S)
  120. \end{array}
  121. \end{equation}
  122. where $g$ is the gravitational acceleration and $\Delta
  123. \sigma = \Delta p/p_S $ is the thickness of the
  124. lowermost model layer.
  125. In addition to the tendencies, the surface fluxes of
  126. momentum, sensible and latent heat and the
  127. partial derivative of the sensible and the latent heat flux
  128. with respect to the surface temperature
  129. are computed:
  130. \begin{equation}\label{fluxes2}
  131. \begin{array}{rcl}
  132. \D F_u & = & \D \rho \, C_m \, |\vec{v}| \,
  133. u^{t+\Delta t} \\
  134. && \\
  135. \D F_v & = & \D \rho \, C_m \, |\vec{v}| \, v^{t+
  136. \Delta t}\\
  137. && \\
  138. \D F_T & = & \D c_p \, \rho \, C_h \, |\vec{v}| \,
  139. (\gamma
  140. T^{t + \Delta t}
  141. - T_S ) \\
  142. && \\
  143. \D L \, F_q & = & \D L\, \rho \, C_h \, C_w \, |\vec{v}|
  144. \,
  145. (\delta
  146. q^{t+\Delta t} - q_S ) \\
  147. && \\
  148. \D \frac{\partial F_T}{\partial T_S} & = & \D - c_p \,
  149. \rho \, C_h \, |\vec{v}| \\
  150. && \\
  151. \D \frac{\partial (L \, F_q)}{\partial T_S} & = & \D -
  152. L\, \rho \, C_h \, C_w \, |\vec{v}| \,
  153. \frac{\partial q_S(T_S)}{\partial T_S}
  154. \end{array}
  155. \end{equation}
  156. The derivatives of the fluxes may be used, for
  157. examples, for an implicit calculation of the
  158. surface temperature (see Section \ref{surtemp}).
  159. \subsection*{ Drag and transfer coefficients}
  160. The calculation of the drag and the transfer
  161. coefficient $C_m$ and $C_h$ follows the method
  162. described in Roeckner et al.~(1992) for the ECHAM-3
  163. model, which bases on the work of Louis (1979) and
  164. Louis et al.~(1982). A Richardson number dependence
  165. of
  166. $C_m$ and $C_h$ in accordance to the
  167. Monin-Obukhov
  168. similarity theory is given by
  169. \begin{equation}
  170. \begin{array}{rcl}
  171. C_m & = & \left( \frac{k}{\ln (z/z_0)}\right)^{2} \,
  172. f_m
  173. (Ri, z/z_0) \\
  174. &&\\
  175. C_h & = & \left( \frac{k}{\ln (z/z_0)}\right)^{2} \, f_h
  176. (Ri, z/z_0)
  177. \end{array}
  178. \end{equation}
  179. where $k$ is the von Karman constant ($k$ = 0.4) and
  180. $z_0$ is the roughness length, which depends on the
  181. surface characteristics (Section~\ref{landsurf} and
  182. Section~\ref{seasurf}). The Richardson
  183. number $Ri$ is
  184. defined as
  185. \begin{equation}
  186. Ri=\frac{g\, \Delta z \,(\gamma_E T - \gamma_E T_S)}{\gamma_E T
  187. \, |\vec{v}|^2}
  188. \end{equation}
  189. where $\gamma_E$ transfers temperatures to virtual
  190. potential temperatures to include the effect of moisture.
  191. \begin{equation}\label{gammaE}
  192. \gamma_E = \left(1- \left(\frac{R_v}{R_d}-1\right)\, q
  193. \right)
  194. \,\left(\frac{p_S}{p}\right)^{\frac{R_d}{c_{pd}}}
  195. \end{equation}
  196. where $q$ refers to the respective specific humidities and
  197. $R_v$ is the gas constant for water
  198. vapor.
  199. Different empirical formulas for stable ($Ri \ge 0$)
  200. and
  201. unstable ($Ri < 0$) situations are used. For the stable
  202. case, $f_m$ and $f_h$ are given by
  203. \begin{equation}\label{fmfh1}
  204. \begin{array}{rcl}
  205. \D f_m & = &\D \frac{1}{1+(2\,b\,Ri) /\sqrt{\,1+ d\,
  206. Ri}}
  207. \\
  208. && \\
  209. \D f_h & = &\D \frac{1}{1+(3\,b\,Ri) /\sqrt{\,1+ d\,
  210. Ri}}
  211. \end{array}
  212. \end{equation}
  213. while for the unstable case, $f_m$ and $f_h$ are
  214. \begin{equation}\label{fmfh2}
  215. \begin{array}{rcl}
  216. \D f_m & = & \D 1- \frac{2\,b\,Ri}{1+3\,b\,c\, [
  217. \frac{k}{\ln(z/z_0+1)}]^2\sqrt{-Ri\, (z/z_0+1)}} \\
  218. && \\
  219. \D f_h & = &\D 1- \frac{3\,b\,Ri}{1+3\,b\,c\, [
  220. \frac{k}{\ln(z/z_0+1)}]^2\sqrt{-Ri\, (z/z_0+1)}}
  221. \end{array}
  222. \end{equation}
  223. where $b$, $c$, and $d$ are prescribed constants and
  224. set
  225. to
  226. default values of $b$ = 5, $c$ = 5 and $d$ = 5.
  227. As in ECHAM-3 for unstable condition over oceans the empirical formula from Miller et al. (1992) is used to compute $C_h$
  228. \begin{equation}\label{miller}
  229. C_h=C_{mn} \cdot (1-C_R^{\delta})^{1/\delta}
  230. \end{equation}
  231. with
  232. \begin{equation}
  233. C_R=\frac{0.0016\cdot (\Delta \Theta_v)^{1/3}}{C_{mn}\cdot |\vec{v}|}
  234. \end{equation}
  235. and
  236. \begin{equation}
  237. C_{mn}=\left(\frac{k}{\ln(z/z_0)}\right)^2
  238. \end{equation}
  239. $\delta$ is set to 1.25.
  240. \subsection{Vertical Diffusion \label{vdiff}}
  241. Vertical diffusion representing the non resolved
  242. turbulent exchange is applied to the horizontal wind
  243. components $u$ and $v$, the potential temperature
  244. $\theta$ ($= T (p_S/p)^{R_d/c_{pd}}$) and the
  245. specific
  246. humidity
  247. $q$. The
  248. tendencies due to the turbulent transports are given by
  249. \begin{equation}
  250. \begin{array}{rcccl}
  251. \D
  252. \frac{\partial u}{\partial t} & = & \D \frac
  253. {1}{\rho}\frac{\partial J_u}{\partial z} & = & \D \frac
  254. {1}{\rho}\frac{\partial }{\partial z} ( \rho\, K_m \,
  255. \frac{\partial u}{\partial z}) \\
  256. &&&& \\
  257. \D \frac{\partial v}{\partial t} & = & \D \frac
  258. {1}{\rho}\frac{\partial J_v}{\partial z} & = & \D \frac
  259. {1}{\rho}\frac{\partial }{\partial z} ( \rho \, K_m \,
  260. \frac{\partial v}{\partial z} )\\
  261. &&&& \\
  262. \D \frac{\partial T}{\partial t} & = &\D \frac
  263. {1}{\rho}\frac{\partial J_T}{\partial z} & = & \D \frac
  264. {1}{\rho}\frac{\partial }{\partial z} ( \rho \, K_h \,
  265. (\frac{p}{p_S})^{R_d/c_{pd}}\,\frac{\partial
  266. \theta}{\partial
  267. z})
  268. \\
  269. &&&& \\
  270. \D \frac{\partial q}{\partial t} & = & \D \frac
  271. {1}{\rho}\frac{\partial J_q}{\partial z} & = & \D \frac
  272. {1}{\rho}\frac{\partial }{\partial z}( \rho\, K_h \,
  273. \frac{\partial q}{\partial z} )
  274. \end{array}
  275. \end{equation}
  276. where p is the
  277. pressure, $p_S$ is the
  278. surface pressure, $R_d$ is the gas constant
  279. for dry air and $c_{pd}$ is
  280. the specific heat for dry air at constant pressure. Here,
  281. the turbulent
  282. fluxes (positive downward) of zonal and meridional
  283. momentum $J_u$ and
  284. $J_v$,
  285. heat $c_{pd} \, J_T$
  286. and moisture $J_q$ are parameterized by a linear
  287. diffusion along the vertical gradient with the exchange
  288. coefficients $K_m$ and $K_h$ for momentum and
  289. heat,
  290. respectively. $K_m$ and $K_h$ depend on the actual
  291. state (see below).
  292. As the effect of the surface fluxes are computed
  293. separately (Section \ref{surflux}), no flux boundary
  294. conditions for the vertical diffusion scheme are
  295. assumed
  296. at the top and the bottom of the atmosphere but the
  297. vertical diffusion is computed starting with
  298. initial values for $u$, $v$, $q$ and $T$ which include
  299. the tendencies due to the surface fluxes.
  300. As for the surface fluxes, the equations are formulated
  301. implicitely with exchange coefficients applying to the
  302. old time level. This leads to sets of linear equations for
  303. $u^{t+\Delta t}$, $v^{t+\Delta t}$, $T^{t+\Delta t}$
  304. and $q^{t+\Delta t}$, which are solved by a back
  305. substitution method.
  306. \subsection*{Exchange coefficients}
  307. The calculation of the exchange coefficient $K_m$ and
  308. $K_h$ follows the mixing length
  309. approach as an extension of the similarity theory used
  310. to
  311. define the drag and transfere
  312. coefficients (Section \ref{surflux} and Roeckner et
  313. al.~1992):
  314. \begin{equation}
  315. \begin{array}{rcl}
  316. \D K_m & = & \D l_m^2\, \left|
  317. \frac{\partial\vec{v}}{\partial
  318. z}
  319. \right| \, f_m(Ri) \\
  320. &&\\
  321. \D K_h & = & \D l_h^2\, \left|
  322. \frac{\partial\vec{v}}{\partial
  323. z}
  324. \right| \, f_h(Ri)
  325. \end{array}
  326. \end{equation}
  327. where the functional dependencies of $f_m$ and $f_h$
  328. on
  329. $Ri$ are the same as for $C_m$ and $C_h$
  330. (Eq.~\ref{fmfh1} and Eq.~\ref{fmfh2}), except that
  331. the
  332. term
  333. \begin{equation}
  334. \left[\frac{k}{\ln(z/z_0+1)}\right]^2\sqrt{(z/z_0+1)}
  335. \end{equation}
  336. is replaced by
  337. \begin{equation}
  338. \frac{l^2}{(\Delta z)^{3/2} \, z^{1/2}}\left[ \left(
  339. \frac{z+\Delta z}{z}\right)^{1/3} -1 \right]^{3/2}
  340. \end{equation}
  341. The Richardson number $Ri$ is defined as
  342. \begin{equation}
  343. Ri=\frac{g}{\gamma T} \frac{\partial (\gamma_E
  344. T)}{\partial z} \left| \frac{\partial \vec{v}}{\partial z}
  345. \right|^{-2}
  346. \end{equation}
  347. with $\gamma$ from Eq.~\ref{gamma} and $\gamma_E$ from Eq.~\ref{gammaE}. According
  348. to
  349. Blackadar (1962), the mixing lengths $l_m$ and $l_h$
  350. are
  351. given by
  352. \begin{equation}
  353. \begin{array}{rcl}
  354. \D \frac{1}{l_m} & = & \D \frac{1}{k\, z}
  355. +\frac{1}{\lambda_m} \\
  356. &&\\
  357. \D \frac{1}{l_h} & = & \D \frac{1}{k\, z}
  358. +\frac{1}{\lambda_h}
  359. \end{array}
  360. \end{equation}
  361. with $\lambda_h = \lambda_m\sqrt{(3 d)/2}$. The
  362. parameters $\lambda_m$ and $d$ are set to default
  363. values
  364. of $\lambda_m = 160~m$ and $d= 5$.
  365. \newpage
  366. \section{Horizontal Diffusion}
  367. The horizontal diffusion parameterization based on the
  368. ideas of Laursen and Eliasen (1989),
  369. which, in the ECHAM-3 model (Roeckner et al.~1992),
  370. improves the results compared with a
  371. ${\nabla}^k$ horizontal diffusion. The diffusion is
  372. done in spectral space. The contribution to
  373. the tendency of a spectral prognostic variable $X_n$ is
  374. \begin{equation}
  375. \frac{\partial X_n}{\partial t} = -k_X L_n X_n
  376. \end{equation}
  377. where $n$ defines the total wave number. $L_n$ is a
  378. scale selective function of the total wave
  379. number and is chosen such that large scales are not
  380. damped while the damping gets stronger
  381. with increasing $n$:
  382. \begin{equation}
  383. L_n = \left\{ \begin{array}{lcl} (n-n_{\star})^{\alpha}
  384. & \mbox{for} & n > n_{\star} \\
  385. &&\\
  386. 0 & \mbox{for} & n
  387. \le n_{\star} \end{array}
  388. \right.
  389. \end{equation}
  390. where $n_{\star}$ is a cut-off wave number. For T21 resolution the
  391. parameters $n_{\star}$ and $\alpha$ are set
  392. to default values of $n_{\star}$~=~15 and
  393. $\alpha$~=~2 similar to the ECHAM-3 model (Roeckner et al.~1992). The diffusion
  394. coefficient $k_X$ defines the timescale of the
  395. damping and depends on the variable. In the model,
  396. $k_X$ is computed from prescribed
  397. damping time scales $\tau_X$ for the smallest waves.
  398. Default values of
  399. $\tau_D$~=~0.2~days for divergence,
  400. $\tau_{\xi}$~=~1.1~days for vorticity and
  401. $\tau_T$~=~15.6~days for temperature and $\tau_q$~=~0.1~days for humidity
  402. are chosen, which are comparable with
  403. the respective values in the T21 ECHAM-3 model exept for humidity where here a considerable smaller value is used. In
  404. contrast to ECHAM-3 no level or
  405. velocity dependent additional damping is applied.
  406. For T42 resolution the respective defaults are:
  407. $n_{\star}$~=~16, $\alpha$~=~4,
  408. $\tau_D$~=~0.06~days,
  409. $\tau_{\xi}$~=~0.3~days, $\tau_T$~=~0.76~days and $\tau_q$~=~0.1~days.
  410. \newpage
  411. \section{Radiation}
  412. \subsection{Short Wave Radiation}
  413. The short wave radiation scheme bases
  414. on the ideas of Lacis and Hansen (1974) for the cloud
  415. free
  416. atmosphere. For the cloudy part, either constant
  417. albedos and
  418. transmissivities for high- middle- and low-level clouds
  419. may be prescribed or parameterizations
  420. following Stephens (1978) and Stephens et al.~(1984)
  421. may be used.
  422. The downward radiation flux density
  423. $F^{\downarrow SW}$ is assumed to be the
  424. product of the extrateristical solar flux density
  425. $E_0$ with different transmission factors for various
  426. processes:
  427. \begin{equation}
  428. F^{\downarrow SW}= \mu_0 \, E_0 \cdot {\cal T}_R \cdot {\cal T}_O
  429. \cdot {\cal T}_W \cdot {\cal T}_D \cdot
  430. {\cal T}_C \cdot
  431. {\cal R}_S
  432. \end{equation}
  433. Here, $\mu_0$ refers to the cosine of the solar zenith
  434. angle and the factor ${\cal R}_S$ incorporates
  435. different surface
  436. albedo values. The Indices of the transmissivities ${\cal T}$
  437. denote Rayleigh scattering ($R$), ozone
  438. absorption ($O$), water vapor absorption ($W$) and
  439. absorption and scattering by aerosols
  440. (dust; $D$) and cloud droplets ($C$), respectively.
  441. $E_0$ and $\mu_0$ are computed following
  442. Berger (1978a, 1978b). The algorithm used is valid to
  443. 1,000,000 years past or hence. The numeric to compute
  444. $E_0$ and
  445. $\mu_0$ is adopted from the
  446. CCM3 climate model (Kiehl et al.~1996, coding by E.~Kluzek 1997).
  447. The
  448. calculation accounts
  449. for earths orbital parameters and the earths distance
  450. to the sun, both depending on the year and the time
  451. of the year. In default mode the model runs with daily averaged insolation but a diurnal cycle can be switched on.
  452. Following, for example, Stephens (1984) the solar
  453. spectral range
  454. is divided into two regions: (1) A visible and
  455. ultraviolet
  456. part for wavelengths $\lambda < 0.75$ $\mu$m with
  457. pure cloud
  458. scattering, ozone absorption and
  459. Rayleigh scattering, and without water vapor
  460. absorption. (2) A
  461. near infrared part for
  462. wavelengths $\lambda > 0.75$ $\mu$m with cloud
  463. scattering and
  464. absorption and with water vapor absorption. Absorption
  465. and
  466. scattering by aerosols is neglected in the present
  467. scheme. Dividing
  468. the total solar energy $E_0$ into the two spectral
  469. regions results in the
  470. fractions ${E_1}$~=~0.517 and $E_2$~=~0.483 for
  471. spectral
  472. ranges 1 and 2, respectively.
  473. \subsection*{Clear sky}
  474. For the clear sky part of the atmospheric column
  475. parameterizations following Lacis and Hansen
  476. (1974) are used for Rayleigh scattering, ozone
  477. absorption and water vapor absorption.
  478. {\bf Visible and ultraviolet spectral range ($\lambda <
  479. 0.75$
  480. $\mu$m)}
  481. In the visible and ultraviolet range, Rayleigh
  482. scattering and ozone absorption are considered for
  483. the clear sky part. Rayleigh scattering is confined to
  484. the lowermost atmospheric layer. The
  485. transmissivity for this layer is given by
  486. \begin{equation}
  487. {\cal T}_{R1}=1 - \frac{0.219}{1+0.816\mu_0}
  488. \end{equation}
  489. for the direct beam, and
  490. \begin{equation}
  491. {\cal T}_{R1}=1 - 0.144
  492. \end{equation}
  493. for the scattered part.
  494. Ozone absorption is considered for the Chappuis band
  495. in the visible ${\cal A}^{vis}$ and for the
  496. ultraviolet range ${\cal A}^{uv}$. The total transmissivity
  497. due to ozone is given by
  498. \begin{equation}
  499. {\cal T}_{O1} = 1 - {\cal A}^{vis}_O - {\cal A}^{uv}_O
  500. \end{equation}
  501. with
  502. \begin{equation}
  503. {\cal A}^{vis}_O = \frac{
  504. 0.02118x}{1+0.042x+0.000323x^2}
  505. \end{equation}
  506. and
  507. \begin{equation}
  508. {\cal A}^{uv}_O=\frac{1.082x}{(1+138.6x)^{0.805}}+\frac{
  509. 0.0658x}{1+(103.6x)^3}
  510. \end{equation}
  511. where the ozone amount traversed by the direct solar
  512. beam, $x$, is
  513. \begin{equation}
  514. x=M \; u_{O_3}
  515. \end{equation}
  516. with $u_{O_3}$ being the ozone amount [cm] in the
  517. vertical column above the considered
  518. layer, and $M$ is the magnification factor after
  519. Rodgers (1967)
  520. \begin{equation}
  521. M= \frac{35}{(1224 {\mu_0}^2 +1)^{\frac{1}{2}}}
  522. \end{equation}
  523. The ozone path traversed by diffuse radiation from
  524. below is
  525. \begin{equation}
  526. x^{*}=M \; u_{O_3}+\overline{M} \; (u_t -u_{O_3})
  527. \end{equation}
  528. where $u_t$ is the total ozone amount above the main
  529. reflecting layer and $\overline{M}$=1.9
  530. is the effective magnification factor for diffusive
  531. upward radiation.
  532. {\bf Near infrared ($\lambda > 0.75$ $\mu$m)}
  533. In the near infrared solar region absorption by water
  534. vapor
  535. is considered only. The transmissivity is given by
  536. \begin{equation}
  537. {\cal T}_{W2}=1-\frac{2.9 y}{(1+141.5y)^{0.635} +
  538. 5.925y}
  539. \end{equation}
  540. where $y$ is the effective water vapor amount [cm]
  541. including an approximate correction for the
  542. pressure and temperature dependence of the absorption
  543. and the magnification factor $M$. For
  544. the direct solar beam, $y$ is given by
  545. \begin{equation}
  546. y=\frac{M}{g}
  547. \int\limits^p_0 0.1 \; q
  548. \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
  549. {\frac{1}{2}} dp
  550. \end{equation}
  551. while for the reflected radiation reaching the layer from
  552. below, $y$ is
  553. \begin{equation}
  554. y=\frac{M}{g}
  555. \int\limits^{p_S}_0
  556. 0.1 \; q
  557. \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
  558. {\frac{1}{2}} dp
  559. +
  560. \frac{\beta_d}{g} \int\limits^{p_S}_{p}
  561. 0.1 \; q
  562. \left(\frac{p}{p_0}\right)\left(\frac{T_0}{T}\right)^
  563. {\frac{1}{2}} dp
  564. \end{equation}
  565. with the acceleration of gravity $g$, the surface
  566. pressure $p_S$, a reference pressure
  567. $p_0$~=~1000~hPa, a reference temperature
  568. $T_0$~=~273~K, the specific humidity $q$
  569. [kg/kg] and the magnification factor for diffuse
  570. radiation $\beta_d$~=~1.66.
  571. \subsection*{Clouds}
  572. Two possibilities for the parameterization of the effect
  573. of clouds on the short wave radiative fluxes are
  574. implemented: (1) prescribed cloud properties and (2) a
  575. parameterization following Stephens (1978) and
  576. Stephens et al. (1984), which is the default setup.
  577. {\bf Prescribed cloud properties}
  578. Radiative properties of clouds are prescribed
  579. depending on
  580. the cloud level. Albedos ${\cal R}_{C1}$ for cloud
  581. scattering in
  582. the visible spectral range ($\lambda < 0.75$ $\mu$m),
  583. and
  584. albedos ${\cal R}_{C2}$ for cloud scattering and
  585. absorptivities
  586. ${\cal A}_{C2}$ for cloud absorption in the near infrared
  587. part
  588. ($\lambda > 0.75$ $\mu$m) are defined for high,
  589. middle
  590. and low level clouds. The default values are listed in Table \ref{tabcl1}.
  591. {\protect
  592. \begin{table}[h]
  593. \begin{center}
  594. \begin{tabular}{|c|c|c|c|}\hline
  595. Cloud & Visible range
  596. &\multicolumn{2}{c|}{Near
  597. infrared} \\
  598. Level & ${\cal R}_{C1}$ & ${\cal R}_{C2}$ &
  599. ${\cal A}_{C1}$ \\
  600. \hline
  601. &&& \\
  602. High & 0.15 & 0.15 & 0.05 \\
  603. Middle & 0.30 & 0.30 & 0.10 \\
  604. Low & 0.60 & 0.60 & 0.20 \\
  605. \hline
  606. \end{tabular}
  607. \end{center}
  608. \caption{\label{tabcl1} Prescribed cloud albedos
  609. ${\cal R}_{C}$
  610. and absorptivities ${\cal A}_{C}$} for spectral range 1 and 2
  611. \end{table}
  612. }
  613. {\bf Default: Parameterization according to Stephens
  614. (1978) and Stephens et al. (1984)}
  615. Following Stephens (1978) and Stephens et al. (1984)
  616. cloud parameters are derived from the cloud liquid
  617. water path $W_L$ [g/m$^2$] and the cosine of the solar zenith
  618. angel $\mu_0$. In the visible and ultraviolet range
  619. cloud scattering is present only while in the near
  620. infrared both, cloud scattering and absorption, are
  621. parameterized.
  622. {\bf Visible and ultraviolet spectral range ($\lambda <
  623. 0.75$
  624. $\mu$m)}
  625. For the cloud transmissivity ${\cal T}_{C1}$ Stephens
  626. parameterization for a non absorbing medium is
  627. applied:
  628. \begin{equation}
  629. {\cal T}_{C1}=1-
  630. \frac{\beta_1\tau_{N1}/\mu_0}{1+\beta_1\tau_{N1}
  631. /\mu_0} = \frac{1}{ 1+\beta_1 \tau_{N1}/\mu_0}
  632. \end{equation}
  633. $\beta_1$ is the backscatter coefficient, which is
  634. available in tabular form. In order to avoid interpolation
  635. of tabular values the following interpolation formula is
  636. used
  637. \begin{equation}
  638. \beta_1 = f_{b1} \; \sqrt{\mu_0}
  639. \end{equation}
  640. where the factor $f_{b1}$ comprises a tuning
  641. opportunity for the cloud albedo and is set to a default
  642. value of 0.0641 for T21L10 (0.02 T21L5 and 0.085 T42L10).
  643. $\tau_{N1}$ is an effective optical depth for which
  644. Stephens (1979) provided the interpolation formula
  645. \begin{equation}
  646. \tau_{N1}= 1.8336 \; (\log{W_L})^{3.963}
  647. \end{equation}
  648. which is approximated by
  649. \begin{equation}
  650. \tau_{N1}= 2\; (\log{W_L})^{3.9}
  651. \end{equation}
  652. to be used also for the near infrared range (see below).
  653. {\bf Near infrared ($\lambda > 0.75$ $\mu$m)}
  654. The transmissivity due to scattering and absorption of
  655. a cloud layer in the near infrared spectral range is
  656. \begin{equation}
  657. {\cal T}_{C2}=\frac{4u}{R}
  658. \end{equation}
  659. where u is given by
  660. \begin{equation}
  661. u^2=\frac{(1-
  662. \tilde{\omega}_0+2\; \beta_2 \; \tilde{\omega}_0)}{(1-
  663. \tilde{\omega}_0)}
  664. \end{equation}
  665. and R by
  666. \begin{equation}
  667. R=(u+1)^2 \exp{(\tau_{eff})}
  668. -(u-1)^2 \exp{(-\tau_{eff})}
  669. \end{equation}
  670. with
  671. \begin{equation}
  672. \tau_{eff}=\frac{\tau_{N2}}{\mu_0}\sqrt{(1-
  673. \tilde{\omega}_0)(1-\tilde{\omega}_0 + 2 \; \beta_2 \;
  674. \tilde{\omega}_0)}
  675. \end{equation}
  676. where the original formulation for the optical depth
  677. $\tau_{N2}$ by Stephens (1978)
  678. \begin{equation}
  679. \tau_{N2}=2.2346 \; (\log{W_L})^{3.8034}
  680. \end{equation}
  681. is, as for the visible range, approximated by
  682. \begin{equation}
  683. \tau_{N2}= 2 \; (\log{W_L})^{3.9}
  684. \end{equation}
  685. Approximations for the table values of the back
  686. scattering coefficient $\beta_2$ and the single
  687. scattering albedo $\tilde{\omega}_0$ are
  688. \begin{equation}
  689. \beta_2=\frac{f_{b2}\; \sqrt{\mu_0}}{\ln{(3+0.1\;
  690. \tau_{N2})}}
  691. \end{equation}
  692. and
  693. \begin{equation}
  694. \tilde{\omega}_0=1-
  695. f_{o2}\;\mu_0^2\;\ln{(1000/\tau_{N2})}
  696. \end{equation}
  697. where $f_{b2}$ and $f_{o2}$ provide a tuning of the
  698. cloud
  699. properties and are set to default values of $f_{b2}$=0.045
  700. and $f_{o2}$=0.0045 for T21L10 (0.004 T21L5, 0.0048 T42L10).
  701. The scattered flux is computed from the cloud albedo
  702. ${\cal R}_{C2}$ which is given by
  703. \begin{equation}
  704. {\cal R}_{C2}=[\exp{(\tau_{eff})}-\exp{(-\tau_{eff})}]
  705. \; \frac{u^2-
  706. 1}{R}
  707. \end{equation}
  708. \subsection*{Vertical integration}
  709. For the vertical integration, the adding method is used
  710. (e.g. Lacis and Hansen 1974, Stephens 1984). The
  711. adding method calculates the reflection ${\cal R}_{ab}$
  712. and transmission ${\cal T}_{ab}$ functions for a
  713. composite layer formed by combining two layers one
  714. (layer $a$) on top of the other (layer $b$). For the
  715. downward beam ${\cal R}_{ab}$ and ${\cal T}_{ab}$ are given by
  716. \begin{eqnarray}\label{LH31}
  717. {\cal R}_{ab} & = &{\cal R}_{a}+{\cal T}_{a}{\cal R}_b{\cal T}^{*}_a/(1-
  718. {\cal R}^*_a{\cal R}_b) \nonumber \\
  719. {\cal T}_{ab} & = &{\cal T}_a{\cal T}_b/(1-{\cal R}^*_a{\cal R}_b)
  720. \end{eqnarray}
  721. where the denominator accounts for multiple
  722. reflections between the two layers. For illumination
  723. form below ${\cal R}^*_{ab}$ and ${\cal T}^*_{ab}$ are given by
  724. \begin{eqnarray}\label{LH32}
  725. {\cal R}^*_{ab} & = &{\cal R}^*_b+{\cal T}^*_b{\cal R}^*_a{\cal T}_b/(1-
  726. {\cal R}^*_a{\cal R}_b) \nonumber \\
  727. {\cal T}^*_{ab} & = &{\cal T}^*_a{\cal T}_b/(1-{\cal R}^*_a{\cal R}_b)
  728. \end{eqnarray}
  729. The following four steps are carried out to obtain the
  730. radiative upward and downward fluxes at the boundary
  731. between two layers from which the total flux and the
  732. absorption (heating rates) are calculated:
  733. 1) ${\cal R}_l$ and ${\cal T}_l$, $l=1, L$ are computed for each
  734. layer and both spectral regions according to the
  735. parameterizations.
  736. 2) The layers are added, going down, to obtain
  737. ${\cal R}_{1,l}$ and ${\cal T}_{1,l}$ for $L=2,L+1$ and
  738. ${\cal R}^*_{1,l}$ and ${\cal T}^*_{1,l}$ for $L=2,L$.
  739. 3) Layers are added one at the time, going up, to obtain
  740. ${\cal R}_{L+1-l,L+1}$, $l=1,L-1$ starting with the ground
  741. layer, ${\cal R}_{L+1} = {\cal R}_S$ which is the surface albedo and
  742. ${\cal T}_{L+1}$=0.
  743. 4) The upward $F^{\uparrow SW}_l$ and downward
  744. $F^{\downarrow SW}_l$ short wave radiative fluxes at
  745. the interface of layer
  746. ($1,l$) and layer (l+1,L+1) are determined from
  747. \begin{eqnarray}
  748. F^{\uparrow SW}_l & = &{\cal T}_{1,l}\;{\cal R}_{l+1,L+1}/(1-
  749. {\cal R}^*_{1,l}\;{\cal R}_{l+1,L+1}) \nonumber \\
  750. F^{\downarrow SW}_l & = &{\cal T}_{1,l}/(1-
  751. {\cal R}^*_{1,l}\;{\cal R}_{l+1,L+1})
  752. \end{eqnarray}
  753. The net downward flux at
  754. level
  755. $l$, $F_l^{\updownarrow SW}$, is given by
  756. \begin{equation}
  757. F_l^{\updownarrow SW}=F_l^{\downarrow SW}-F_l^{\uparrow SW}
  758. \end{equation}
  759. Finally, the temperature tendency for the layer between
  760. $l$ and $l+1$ is computed:
  761. \begin{equation}
  762. \frac{\Delta T_{l+\frac{1}{2}}}{2\Delta t} = -
  763. \frac{g}{c_p
  764. \, p_S}\frac{F_{l+1}^{\updownarrow SW}-F_{l}^{\updownarrow SW}}{\Delta
  765. \sigma}
  766. \end{equation}
  767. \newpage
  768. \subsection{Long Wave Radiation}
  769. {\bf Clear sky}
  770. For the clear sky long wave radiation, the broad band
  771. emissivity method is employed (see, for example,
  772. Manabe and M\"oller 1961, Rodgers 1967, Sasamori
  773. 1968, Katayama 1972, Boer et al. 1984).
  774. Using the broad band transmissivities
  775. ${\cal T}_{(z,z^{\prime})}$ between level $z$ and level
  776. $z^{\prime}$, the upward and downward fluxes at
  777. level
  778. $z$, $F^{\uparrow LW}(z)$ and
  779. $F^{\downarrow LW}(z)$, are
  780. \begin{equation}
  781. \begin{array}{rcl}
  782. \D F^{\uparrow LW}(z) & = &\D {\cal A}_S \, B(T_S)
  783. {\cal T}_{(z,0)} +
  784. \int\limits_0^z B(T^{\prime}) \frac{\partial
  785. {\cal T}_{(z,z^{\prime})}}{\partial z^{\prime}} d z^{\prime}
  786. \\
  787. & & \\
  788. \D F^{\downarrow LW}(z) & = & \D \int\limits_{\infty}^z
  789. B(T^{\prime}) \frac{\partial
  790. {\cal T}_{(z,z^{\prime})}}{\partial z^{\prime}} d z^{\prime}
  791. \end{array}
  792. \end{equation}
  793. where $B(T)$ denotes the black body flux ($ B(T) = \sigma_{SB}
  794. T^4$) and
  795. ${\cal A}_S$ is the surface emissivity. The effect
  796. of water vapor, carbon dioxide and ozone is included in the
  797. calculations of the transmissivities ${\cal T}$
  798. (with ${\cal T} = 1 - {\cal A}$, where ${\cal A}$ is the
  799. absoroptivity/emissivity). The transmissivities for water vapor
  800. ${\cal T}_{H_2O}$, carbon dioxide ${\cal T}_{CO_2}$ and
  801. ozone ${\cal T}_{O_3}$ are taken from Sasamori (1968):
  802. \begin{equation}\label{taus}
  803. \begin{array}{lcl}
  804. \D {\cal T}_{H_2O}& = & \D 1-0.846\;(u_{H_2O}+3.59 \cdot 10^{-5})^{0.243}
  805. -6.90\cdot 10^{-2} \\
  806. && \\
  807. \multicolumn{3}{l}{\mbox{for } u_{H_2O} < 0.01\mbox{ g, and }}\\
  808. && \\
  809. \D {\cal T}_{H_2O}& = & \D 1-0.240\log{(u_{H_2O}+0.010)}+0.622 \\
  810. && \\
  811. \multicolumn{3}{l}{\mbox{else.}}\\
  812. &&\\
  813. &&\\
  814. \D {\cal T}_{CO_2}& = & \D 1-0.0825\;u_{CO_2}^{0.456}\\
  815. && \\
  816. \multicolumn{3}{l}{\mbox{for } u_{CO_2} \le 0.5 \mbox{ cm, and }}\\
  817. && \\
  818. \D {\cal T}_{CO_2}& = & \D 1-0.0461\log{(u_{CO_2})}+0.074 \\
  819. && \\
  820. \multicolumn{3}{l}{\mbox{else.}}\\
  821. &&\\
  822. &&\\
  823. \D {\cal T}_{O_3} & = & \D 1-0.0122\log{(u_{O_3}+6.5 \cdot 10^{-4})}+0.0385
  824. \end{array}
  825. \end{equation}
  826. where $u_{H_2O}$, $u_{CO_2}$ and $u_{O_3}$ are the effective
  827. amounts of water vapor, carbon
  828. dioxide and ozone, respectively, which are obtained from:
  829. \begin{equation}
  830. u(p, p^{\prime}) =
  831. \frac{f}{g}
  832. \int\limits_{p}^{p^{\prime}} q_X
  833. \left(\frac{p^{\prime\prime}}{p_0}\right)
  834. dp^{\prime\prime}
  835. \end{equation}
  836. where $q_X$ denotes the mixing
  837. ratios [kg/kg] of water vapor, carbon dioxide and ozone,
  838. respectively, $g$ is the gravitational acceleration, $p$
  839. is pressure and $p_0$~=~1000 hPa is the reference
  840. pressure. The factor $f$ is used to transfer the units to g/cm$^2$
  841. for $u_{H_2O}$ and cm-STP for
  842. $u_{CO_2}$ and cm-STP for $u_{O_3}$, which are used in Eq.~\ref{taus}.
  843. To account for the overlap between
  844. the water vapor and the carbon dioxide bands near
  845. 15~$\mu$m, the CO$_2$ absorption is
  846. corrected by a H$_2$O transmission at 15~$\mu$m,
  847. ${\cal T}_{H_2O}^{15\mu m}$, with
  848. ${\cal T}_{H_2O}^{15\mu
  849. m}$ given by
  850. \begin{equation}
  851. {\cal T}_{H_2O}^{15\mu m} = 1.33-0.832 \, (u_{H_2O}
  852. +
  853. 0.0286)^{0.26}
  854. \end{equation}
  855. Water vapour continuum absorption is parameterized by
  856. \begin{equation}
  857. {\cal T}_{H_2O}^{cont} = 1. - \exp(-k_{cont} u_{H_2O})
  858. \end{equation}
  859. with a constant $k_{cont}$ (default =0.03 for T21L10, 0.035 T21L5,T42L10)
  860. {\bf Clouds}
  861. Clouds can be either treated as gray bodies with a prescribed cloud flux emissivity (grayness) or
  862. the cloud flux emissivity is obtained from the cloud liquid water contend. If the cloud flux
  863. emissivity (grayness) ${\cal A}^{cl}$ is externally prescribed, the value is
  864. attributed to each cloud layer. Otherwise, which is the default, ${\cal A}^{cl}$ is calculated
  865. from the cloud liquid water (e.g. Stephens 1984)
  866. \begin{equation}
  867. {\cal A}^{cl}=1.-\exp{(-\beta_d \; k^{cl} \; W_L)}
  868. \end{equation}
  869. where $\beta_d$~=~1.66 is the diffusivity factor, $k^{cl}$ is the mass absorption coefficent
  870. (with
  871. is set to a default value of 0.1~m$^2$/g (Slingo and Slingo 1991)) and $W_L$ is the
  872. cloud liquid water path.
  873. For a single layer
  874. between $z$ and $z^{\prime}$ with fractional cloud
  875. cover
  876. $cc$, the total transmissivity ${\cal T}^*_{(z, z^{\prime})}$
  877. is
  878. given by
  879. \begin{equation}
  880. {\cal T}^*_{(z, z^{\prime})} = {\cal T}_{(z, z^{\prime})} \, (1 - cc \,
  881. {\cal A}^{cl})
  882. \end{equation}
  883. where ${\cal T}_{(z, z^{\prime})}$ is the clear sky
  884. transmissivity. When there is more than one cloud
  885. layer
  886. with fractional cover, random overlapping of the
  887. clouds is
  888. assumed and ${\cal T}^*_{(z, z^{\prime})}$ becomes
  889. \begin{equation}
  890. {\cal T}^*_{(z, z^{\prime})} ={\cal T}_{(z, z^{\prime})} \, \prod_j (1
  891. - cc_j \, {\cal A}^{cl}_{j})
  892. \end{equation}
  893. where the subscript $j$ denotes the cloud layers.
  894. \subsection*{Vertical discretization}
  895. To compute the temperature tendency for a model
  896. layer resulting form the divergence of the radiative
  897. fluxes, the vertical discretization scheme of Chou et al. (2002) is used. The upward and
  898. downward fluxes, $F_l^{\uparrow LW}$ and $F_l^{\downarrow LW}$, at
  899. level $l$, which is the interface between two model
  900. layers, are computed from
  901. \begin{equation}\label{rad1}
  902. \begin{array}{rcllcl}
  903. \D F_l^{\uparrow LW}& = &\D \sum\limits_{l^\prime =
  904. l}^{L} B_{l^\prime+\frac{1}{2}} [{\cal T}^*_{(l ,
  905. l^\prime)}-
  906. {\cal T}^*_{(l^\prime+1,l)}] & & \D \;\; l=1, \cdots , L\\
  907. &&&&\\
  908. && \D +{\cal T}^*_{(l ,L+1)} \; F_{L+1}^{\uparrow LW} & &\\
  909. & & & &\\
  910. &&&&\\
  911. \D F_l^{\downarrow LW}& = &\D
  912. \sum\limits_{l^\prime=1}^{l-
  913. 1} B_{l^\prime+\frac{1}{2}} [{\cal T}^*_{(l^\prime+1,l)}-{\cal T}^*_{(l^\prime,l)}] & & \D
  914. \;\; l=2,
  915. \cdots , L+1
  916. \end{array}
  917. \end{equation}
  918. where ${\cal T}^*_{(l,l^{\prime})}$ denotes the
  919. transmissivity of
  920. the layer from level $l$ to level $ l^{\prime}$ (see
  921. above)
  922. and $B_{l+\frac{1}{2}}$ is the black body flux for
  923. level
  924. $l+\frac{1}{2}$. The downward flux at the top of the atmosphere, $F_0^{\downarrow
  925. LW}$, and the upward flux at the surface ,$F_{L+1}^{\uparrow LW}$, are given by
  926. \begin{equation}
  927. \begin{array}{rcl}
  928. \D F_0^{\downarrow LW} & = & \D 0 \\
  929. &&\\
  930. \D F_{L+1}^{\uparrow LW} & = & \D {\cal A}_S \; B(T_S) + (1-{\cal A}_S) \;
  931. F_{L+1}^{\downarrow LW}
  932. \end{array}
  933. \end{equation}
  934. where ${\cal A}_S$ denotes the surface emissivity and $T_S$ is the surface temperature. Note,
  935. that for a more convenient discription of the scheme,
  936. $l+\frac{1}{2}$
  937. denotes a so called full level, where the temperatures
  938. are
  939. defined. This may be in contrast to the convention in
  940. most of the other sections where a full
  941. level is indicated by $l$.
  942. Eqs.~\ref{rad1} can be rearranged to give
  943. \begin{equation}\label{vertical1}
  944. \begin{array}{rclcl}
  945. \D F_l^{\uparrow LW}& = &\D B_{l+\frac{1}{2}} +
  946. \sum\limits_{l^\prime=l+1}^{L+1} {\cal T}^*_{(l^\prime ,
  947. l)} \,
  948. [B_{l^\prime+\frac{1}{2}} - B_{l^\prime-
  949. \frac{1}{2}}] & & \D \;\; l=1, \cdots , L\\
  950. &&&&\\
  951. & & + {\cal T}^*_{(l,L+1)} \, (1-{\cal A}_S) \; F_{L+1}^{\downarrow LW} & & \\
  952. & & & & \\
  953. &&&&\\
  954. \D F_{l^\prime}^{\downarrow LW}& = & \D
  955. B_{l^\prime-
  956. \frac{1}{2}} - \sum\limits_{l=1}^{l^\prime-1}{\cal T}^*_{(l^\prime , l)} \,
  957. [B_{l+\frac{1}{2}} -
  958. B_{l-\frac{1}{2}}]
  959. & & \D \;\; l^\prime=2, \cdots , L+1
  960. \end{array}
  961. \end{equation}
  962. with the boundary conditions
  963. \begin{equation}
  964. \begin{array}{rcl}
  965. \D B_{L+\frac{3}{2}}& = & \D {\cal A}_S \,
  966. B(T_S) \\
  967. &&\\
  968. \D B_{\frac{1}{2}} & = & \D 0
  969. \end{array}
  970. \end{equation}
  971. The net downward flux at
  972. level
  973. $l$, $F_l^{\updownarrow LW}$, is given by
  974. \begin{equation}
  975. F_l^{\updownarrow LW}=F_l^{\downarrow LW}-F_l^{\uparrow LW}
  976. \end{equation}
  977. Finally, the temperature tendency for the layer between
  978. $l$ and $l+1$ is computed:
  979. \begin{equation}
  980. \frac{\Delta T_{l+\frac{1}{2}}}{2\Delta t} = -
  981. \frac{g}{c_p
  982. \, p_S}\frac{F_{l+1}^{\updownarrow LW}-F_{l}^{\updownarrow LW}}{\Delta
  983. \sigma}
  984. \end{equation}
  985. {\bf Emission of a layer}
  986. As pointed out by Chou et al.~(2002), the difference between the upward and downward
  987. emission of a layer will be large, if the layer is rather opaque and the temperature range across
  988. the layer is large. This, in particular, holds for coarse vertical resolution as in the default version
  989. of the model. Therefore, the upward and the downward emission of a layer is computed
  990. separately following the ideas of Chou et al.~(2002):
  991. The contribution of the upward flux at level $p$ from the adjecant layer below can be written as
  992. \begin{equation} \label{FUPLW}
  993. \Delta F^{\uparrow LW}(p) = -\int\limits^{p+\Delta p}_{p} B(p^{\prime}) \; \frac{\partial
  994. {\cal T}_{(p,p^{\prime})}}{\partial p^{\prime}} \; dp^{\prime} = B^u \; (1-{\cal T}_{
  995. (p+\Delta p, p)})
  996. \end{equation}
  997. where $\Delta p$ is the thickness of the adjacent layer, $B^u$ is the effective Planck flux for the
  998. adjacent layer, and ${\cal T}_{(p+\Delta p, p)}$ is the flux transmittance between $p$ and $p
  999. +\Delta p$. Assuming that the Planck function varies linearly with pressure and the
  1000. transmittance decreases exponentially with pressure away from $p$ it follows
  1001. \begin{equation}
  1002. B(p^{\prime})= B(p) + \frac{(B(p)-B(p+\Delta p)) (p^{\prime} - p)}{\Delta p}
  1003. \end{equation}
  1004. and
  1005. \begin{equation}
  1006. {\cal T}_{(p, p^{\prime})} = \exp{(-c\; (p^{\prime}-p))}
  1007. \end{equation}
  1008. with $c$ ia a constant. From Eq.~\ref{FUPLW} the effective Planck flux for the adjacent layer
  1009. $B^u$ is
  1010. \begin{equation}
  1011. B^u=\frac{B(p)-B(p+\Delta p)\;{\cal T}_{(p+\Delta p, p)}}{1-{\cal T}_{(p+\Delta p, p)}}
  1012. +\frac{B(p)-
  1013. B(p+\Delta p)}{\ln({\cal T}_{(p+\Delta p, p)})}
  1014. \end{equation}
  1015. Similarly, for the downward flux at the lower boundary of the layer, the effective Planck
  1016. function of the layer $B^d$ is
  1017. \begin{equation}
  1018. B^d=\frac{B(p+\Delta p)-B(p)\;{\cal T}_{(p+\Delta p, p)}}{1-{\cal T}_{(p+\Delta p, p)}}
  1019. +\frac{B(p+\Delta
  1020. p)-B(p)}{\ln({\cal T}_{(p+\Delta p, p)})}
  1021. \end{equation}
  1022. Replacing the respective Planck functions in Eqs.~\ref{vertical1} by $B^u$ and $B^d$ results
  1023. in
  1024. \begin{equation}\label{vertical2}
  1025. \begin{array}{rclcl}
  1026. \D F_l^{\uparrow LW}& = &\D B^u_{l+\frac{1}{2}} +
  1027. \sum\limits_{l^\prime=l+1}^{L+1} {\cal T}^*_{(l^\prime ,
  1028. l)} \,
  1029. [B^u_{l^\prime+\frac{1}{2}} - B^u_{l^\prime-
  1030. \frac{1}{2}}] & & \D \;\; l=1, \cdots , L\\
  1031. &&&&\\
  1032. & & \D + {\cal T}^*_{(l,L+1)} \, (1-{\cal A}_S) \; F_{L+1}^{\downarrow LW} & & \\
  1033. & & & & \\
  1034. &&&&\\
  1035. \D F_{l^\prime}^{\downarrow LW}& = & \D
  1036. B^d_{l^\prime-
  1037. \frac{1}{2}} - \sum\limits_{l=1}^{l^\prime-1} {\cal T}^*_{(l^\prime , l)} \,
  1038. [B^d_{l+\frac{1}{2}}
  1039. -
  1040. B^d_{l-\frac{1}{2}}]
  1041. & & \D \;\; l^\prime=2, \cdots , L+1
  1042. \end{array}
  1043. \end{equation}
  1044. where
  1045. \begin{equation}
  1046. \begin{array}{lcl}
  1047. \D B^d_{l^{\prime}-\frac{1}{2}} & = & \D \frac{B_{l^{\prime}}-B_{l^{\prime}-1} \;
  1048. {\cal T}_{(l^{\prime},l^{\prime}-1)}}{1-{\cal T}_{(l^{\prime},l^{\prime}-1)}} +
  1049. \frac{B_{l^{\prime}} - B_{l^{\prime}-1}}{\ln({\cal T}_{(l^{\prime},l^{\prime}-1)})} \\
  1050. && \\
  1051. \D B^u_{l^{\prime}-\frac{1}{2}} & = & \D (B_{l^{\prime}} + B_{l^{\prime}-1} ) -
  1052. B^d_{l^{\prime}-\frac{1}{2}}
  1053. \end{array}
  1054. \end{equation}
  1055. For the calculation of the effective Plank function, the mean transmissivity for a layer partially
  1056. filled with clouds is given by
  1057. \begin{equation}
  1058. {\cal T}_{(l^{\prime},l^{\prime}-1)} = f_{{\cal T}} \; {\cal
  1059. T}^{cs}_{(l^{\prime},l^{\prime}-1)} \; (1 -
  1060. cc_{(l^{\prime},l^{\prime}-1)}{\cal A}^{cl}_{(l^{\prime},l^{\prime}-1)})
  1061. \end{equation}
  1062. with the cloud emissivity ${\cal A}^{cl}$ and the clear sky transmissivity ${\cal T}^{cs}$
  1063. being defined above, and the factor $f_{{\cal T}}$ provides a tuning opportunity.
  1064. When a model layer spans a region where the temperature lapse rate changes signs, the linearity
  1065. of $B$ with respect to $p$ can not longer be assumed and $B^d$ and $B^u$ are simply
  1066. computed from
  1067. \begin{equation}
  1068. B^u_{l+\frac{1}{2}}=B^d_{l-\frac{1}{2}}= 0.5 \; B_{l+\frac{1}{2}} + 0.25 \; (B_{l} +
  1069. B_{l^{\prime}})
  1070. \end{equation}
  1071. \subsection{Ozone}
  1072. Ozone concentration is prescribed. Either a three dimensional ozone distribution can be
  1073. externally provided or an idealized annual cycle of ozone concentration can be used. The
  1074. idealized distribution bases on the analytic ozone distribution of Green (1964):
  1075. \begin{equation}
  1076. u_{O_3}(h)=\frac{a+a \; \exp{(-b/c)}}{1+\exp((h-b)/c)}
  1077. \end{equation}
  1078. where $u_{O_3}(h)$ is the ozone amount [cm-STP] in a vertical column above the altitude $h$,
  1079. $a$ is the total ozone amount in a vertical column above the ground, $b$ the altitude at which
  1080. the ozone concentration has its maximum. While for $a$~=~0.4~cm, $b$~=~20~km and
  1081. $c$~=~5~km
  1082. this distribution fits close to the mid-latitude winter ozone distribution, an annual cycle and a
  1083. latitudinal dependence is introduced by varying $a$ with time $t$ and latitude $\phi$:
  1084. \begin{equation}
  1085. a(t,\phi)=a0+a1\cdot|\sin(\phi)|+ac\cdot \sin(\phi) \cdot \cos(2\pi(d-doff)/ndy)
  1086. \end{equation}
  1087. where $d$ is the actual day of the year, $doff$ an offset and $ndy$ the number of days per year. The defaults for the involved parameters are: $a0=0.25$, $a1=0.11$ and $ac=0.08$.
  1088. \subsection{Additional Newtonian cooling}
  1089. For the standard setup with a vertical resolution of five equally spaced sigma-levels, the model
  1090. produces a strong bias in the stratospheric (uppermost level) temperatures. This may be
  1091. attributed to the insufficient representation of the stratosphere and its radiative and dynamical
  1092. processes. The bias also effects the tropospheric circulation leading, for example, to a
  1093. misplacement of the dominant pressure centers. To enable the simulation of a more realistic
  1094. tropospheric climate, a Newtonian cooling can be applied to the uppermost level. Using this
  1095. method, the model temperature $T$ is relaxed towards a externally given distribution of the
  1096. temperature $T_{NC}$ which results in additional temperature tendencies $\dot{T}$ for the
  1097. uppermost model level of
  1098. \begin{equation}
  1099. \dot{T}=\frac{T_{NC}-T}{\tau_{NC}}
  1100. \end{equation}
  1101. where $\tau_{NC}$ is the time scale of the relaxation, which has a default value of ten days.
  1102. \newpage
  1103. \section{Moist Processes and Dry Convection}
  1104. \subsection{Correction of Negative Humidity}
  1105. Local negative values of specific humidity are an
  1106. artifact of spectral models. In the model, a simple
  1107. procedure corrects these negative values by
  1108. conserving the global amount of water. The correction of negative moisture is performed at the
  1109. beginning of the grid-point
  1110. parameterization scheme. A negative
  1111. value of specific humidity is reset to zero.
  1112. Accumulation of all corrections defines a correction
  1113. factor. A hierarchical scheme of three steps is used. First, the correction is done within an
  1114. atmospheric column only. If there are atmospheric columns without sufficient moisture, a
  1115. second correction step is done using all grid points of the respective latitude. Finally, if there is
  1116. still negative humidity remaining, a global correction is performed.
  1117. \subsection{Saturation Specific Humidity}
  1118. For parameterizations of moist processes like cumulus
  1119. convection and large scale condensation
  1120. the computation of the saturation specific humidity
  1121. $q_{sat}(T)$ and its derivative with respect
  1122. to temperature $dq_{sat}(T)/dT$ is needed at several
  1123. places. In
  1124. the model, the Tetens formula (Lowe 1977) is used to
  1125. calculate the saturation pressure
  1126. $e_{sat} (T)$ and its derivative with respect to
  1127. temperature $de_{sat}(T)/dT$:
  1128. \begin{equation}
  1129. \begin{array}{rcl}
  1130. \D e_{sat}(T) & = & \D a_1 \exp{\left(a_2 \,
  1131. \frac{T-T_0}{T-a_3}\right)} \\
  1132. && \\
  1133. \D \frac{de_{sat}(T)}{dT} & = & \D \frac{a_2 \, (T_0
  1134. - a_3)}{(T-a_3)^2} \, e_{sat}(T)
  1135. \end{array}
  1136. \end{equation}
  1137. with the constants $a_1$~=~610.78,
  1138. $a_2$~=~17.2693882, $a_3$~=~35.86 and
  1139. $T_0$~=~273.16. The
  1140. saturation specific humidity $q_{sat}(T)$ and its
  1141. derivative $dq_{sat}(T)/dT$ are given by
  1142. \begin{equation}\label{qsat}
  1143. \begin{array}{rcl}
  1144. \D q_{sat}(T) & = & \D \frac{\epsilon \,
  1145. e_{sat}(T)}{p-(1-\epsilon )\, e_{sat}
  1146. (T)} \\
  1147. &&\\
  1148. \D \frac{dq_{sat}(T)}{dT} & = & \D \frac{p \,
  1149. q_{sat}(T)}{p-(1-\epsilon)\, e_{sat}
  1150. (T)} \frac{de_{sat}(T)}{dT}\\
  1151. \end{array}
  1152. \end{equation}
  1153. where $p$ is the pressure and $\epsilon$ is the ration
  1154. of the gas constants
  1155. for dry air $R_d$ and water vapor $R_v$ ($\epsilon =
  1156. R_d / R_v$).
  1157. \subsection{Cumulus Convection}
  1158. The cumulus convection is parameterized by a
  1159. Kuo-type convection scheme (Kuo 1965, 1974)
  1160. with some modifications to the original Kuo-scheme.
  1161. The Kuo-scheme considers the effect of
  1162. cumulus convection on the large scale flow applying
  1163. the following assumptions. Cumulus
  1164. clouds are forced by mean low level convergence in
  1165. regions of conditionally unstable
  1166. stratification. The production of cloud air is
  1167. proportional to the net amount of moisture
  1168. convergence into one grid box column plus the
  1169. moisture supply by surface evaporation. In a
  1170. modification to the original scheme, the implemented
  1171. scheme also considers clouds which
  1172. originate at upper levels where moisture convergence
  1173. is observed. This type of cloud may occur
  1174. in mid-latitude frontal regions. Therefore, only the
  1175. moisture contribution which takes place in
  1176. the layer between the lifting level and the top of the
  1177. cloud is used instead of the whole column.
  1178. Thus, the total moisture supply $I$ in a period $2
  1179. \Delta t$ is given by
  1180. \begin{equation}\label{cli}
  1181. I= \frac{2 \Delta t \, p_S}{g}
  1182. \int\limits_{\sigma_{Top}}^{\sigma_{Lift}} A_q \, d
  1183. \sigma
  1184. \end{equation}
  1185. where $A_q$ is the moisture convergence plus the
  1186. surface evaporation if the lifting level
  1187. $\sigma_{Lift}$ is the lowermost model level.
  1188. $\sigma_{Top}$ is the cloud top level, $p_S$ is
  1189. the surface pressure and $g$ is the gravitational
  1190. acceleration. Lifting level, cloud base and cloud
  1191. top are determined as follows. Starting form the
  1192. lowermost level, the first level with positive
  1193. moisture supply $A_q$ is considered as a lifting level. If the lowermost level $L$ is considered
  1194. to be a lifting level and the surface layer is dry adiabatic unstable ($\theta_S > \theta_L$
  1195. where $\theta$ denotes the potential temperature), the convection starts from the surface.
  1196. Air from the lifting level ($l+1$) is lifted dry
  1197. adiabatically up to the next level ($l$) by keeping its
  1198. specific humidity. A cloud base is
  1199. assumed to coincide with level $l+\frac{1}{2}$ if the
  1200. air is saturated at $l$. Above the cloud
  1201. base the air is lifted moist adiabatically. Distribution of
  1202. temperature $T_{cl}$ and of moisture
  1203. $q_{cl}$ in the cloud is found by first lifting the air
  1204. dry adiabatically
  1205. \begin{equation}\label{clad}
  1206. \begin{array}{rcl}
  1207. \D (T_{cl})_l^{Ad} & = & \D (T_{cl})_{l+1}
  1208. \left(\frac{\sigma_l}{\sigma_{l+1}}\right)^{\frac{R_
  1209. d}{c_{pd}}} \\
  1210. &&\\
  1211. \D (q_{cl})_l^{Ad} & = & \D (q_{cl})_{l+1}
  1212. \end{array}
  1213. \end{equation}
  1214. and then by correcting temperature and moisture values
  1215. due to the condensation of water vapor
  1216. \begin{equation}\label{ccc1}
  1217. \begin{array}{rcl}
  1218. \D (T_{cl})_l & = & \D (T_{cl})_l^{Ad} +
  1219. \frac{L}{c_p} \, \frac{(q_{cl})_l^{Ad} - q_{sat}
  1220. [(T_{cl})_l^{Ad}]}{1+\frac{L}{c_p}\,
  1221. \frac{dq_{sat}[(T_{cl})_l^{Ad}]}{dT}} \\
  1222. &&\\
  1223. \D (q_{cl})_l & = & \D (q_{cl})_l^{Ad}
  1224. -\frac{(q_{cl})_l^{Ad} - q_{sat}[(T_
  1225. {cl})_l^{Ad}]}{1+\frac{L}{c_p}\,
  1226. \frac{dq_{sat}[(T_{cl})_l^{Ad}]}{dT}}
  1227. \end{array}
  1228. \end{equation}
  1229. where the suturation specific humidity $q_{sat}$ and
  1230. its derivative with respect to temperature
  1231. $dq_{sat}/dT$ are computed from Eqs.~\ref{qsat}.
  1232. $L$ is
  1233. either the latent heat of vapourisation $L_v$ or
  1234. the latent heat of sublimation $L_s$ depending on the
  1235. temperature.
  1236. $c_p$ is the specific
  1237. heat for moist air at constant pressure ($c_p= c_{pd} \,
  1238. [1+(c_{pv}/c_{pd}-1)\, q]$ where
  1239. $c_{pd}$ and $c_{pv}$ are the specific heats at
  1240. constant pressure for dry air and water vapor,
  1241. respectively) and $R_d$ in Eq.~\ref{clad} is the gas
  1242. constant for dry air.
  1243. For reasons of accuracy the calculation (\ref{ccc1}) is
  1244. repeated once where $(T_{cl})^{Ad}$
  1245. and $(q_{cl})^{Ad}$ are now replaced by the results
  1246. of the first iteration.
  1247. Cumulus clouds are assumed to exist only if the
  1248. environmental air with temperature $T_e$ and
  1249. moisture $q_e$ is unstable stratified with regard to the
  1250. rising cloud parcel:
  1251. \begin{equation}
  1252. (T_{cl})_l > (T_e)_l
  1253. \end{equation}
  1254. The top of the cloud $\sigma_{Top}$ is then defined
  1255. as
  1256. \begin{equation}
  1257. \sigma_{Top}=\sigma_{l+\frac{1}{2}} \; \mbox{if }
  1258. \left\{ \begin{array}{lcll} (T_{cl})_l &
  1259. \le &
  1260. (T_{e})_l & \mbox{and} \\ &&& \\ (T_{cl})_{l+1} &
  1261. > & (T_{e})_{l+1} & \end{array}
  1262. \right.
  1263. \end{equation}
  1264. Cumulus clouds do exist only if the net moisture
  1265. accession $I$ as given by Eq.~\ref{cli} is
  1266. positive.
  1267. Once this final check has been done, the heating and
  1268. moistening of the environmental air and
  1269. the
  1270. convective rain are computed.
  1271. In the model either the original scheme proposed by
  1272. Kuo (1968) or the modified scheme with
  1273. the parameter $\beta$ (Kuo 1974) can be chosen,
  1274. where $\beta$ determines the partitioning of
  1275. heating and moistening of the environmental air. In the
  1276. scheme without $\beta$ the surplus $P$
  1277. of total energy of the cloud against the environmental
  1278. air is given by
  1279. \begin{equation}
  1280. P=\frac{p_s}{g}
  1281. \int\limits_{\sigma_{Top}}^{\sigma_{Base}} (c_p\,
  1282. (T_{cl} -T_{e}) + L\,
  1283. (q_{sat}(T_e)-q_{e})) d\sigma
  1284. \end{equation}
  1285. The clouds produced dissolve instantaneously by
  1286. artificial mixing with the environmental air,
  1287. whereby the environment is heated and moistened by
  1288. \begin{equation}\label{handm}
  1289. \begin{array}{rcl}
  1290. \D (\Delta T)^{cl} & = & \D a \, (T_{cl} -T _e) \\
  1291. &&\\
  1292. \D (\Delta q)^{cl} & = & \D a \, (q_{sat}(T_e) -q _e)
  1293. \end{array}
  1294. \end{equation}
  1295. where $a$ is the fractional cloud area being produced
  1296. by the moisture supply:
  1297. \begin{equation}
  1298. a=L\, \frac{I}{P}
  1299. \end{equation}
  1300. In the scheme with $\beta$ the fraction 1-$\beta$ of the
  1301. moisture is condensed, while the
  1302. remaining fraction $\beta$ is stored in the atmosphere.
  1303. The parameter $\beta$ depends on the
  1304. mean relative humidity and, in the present scheme, is
  1305. given by
  1306. \begin{equation}
  1307. \beta = \left( 1 -
  1308. \frac{1}{\sigma_{Base}-\sigma_{Top}}
  1309. \int\limits_{\sigma_{Top}}^{\sigma_{Base}}
  1310. \frac{q_e}{q_{sat}(T_e)} d\sigma \right)^3
  1311. \end{equation}
  1312. Instead of Eq.~\ref{handm}, the temperature and
  1313. moisture tendencies are now
  1314. \begin{equation}\label{handm2}
  1315. \begin{array}{rcl}
  1316. \D (\Delta T)^{cl} & = & \D a_T \, (T_{cl} -T _e) \\
  1317. &&\\
  1318. \D (\Delta q)^{cl} & = & \D a_q \, (q_{sat}(T_e) -q
  1319. _e)
  1320. \end{array}
  1321. \end{equation}
  1322. where $a_T$ and $a_q$ are given by
  1323. \begin{equation}
  1324. \begin{array}{rcl}
  1325. \D a_T & = & \D \frac{(1-\beta )\, L\, I }{c_p\,
  1326. \frac{p_S}{g}\,
  1327. \int\limits_{\sigma_{Top}}^{\sigma_{Base}} (T_{cl}
  1328. - T_e)\, d\sigma} \\
  1329. &&\\
  1330. \D a_q & = & \D \frac{\beta \, I }{\frac{p_S}{g}\,
  1331. \int\limits_{\sigma_{Top}}^{\sigma_{Base}}
  1332. (q_{sat}(T_e) - q_e) \, d\sigma}
  1333. \end{array}
  1334. \end{equation}
  1335. The final tendencies for moisture $\partial q / \partial
  1336. t$ and temperature $\partial T / \partial t$
  1337. which enter the diabatic leap frog time step are given
  1338. by
  1339. \begin{equation}
  1340. \begin{array}{rcl}
  1341. \D \frac{\partial q}{\partial t} & = & \D \frac{(\Delta
  1342. q)^{cl}}{2 \Delta t} - {\delta}^{cl} A_q
  1343. \\
  1344. && \\
  1345. \D \frac{\partial T}{\partial t} & = & \D \frac{(\Delta
  1346. T)^{cl}}{2 \Delta t}
  1347. \end{array}
  1348. \end{equation}
  1349. where ${\delta}^{cl}$ is specified by
  1350. \begin{equation}
  1351. {\delta}^{cl} = \left\{ \begin{array}{ll} 1 & \mbox{if
  1352. } \; \sigma_{Top} \le \sigma \le
  1353. \sigma_{Lift} \\ & \\ 0 & \mbox{otherwise}
  1354. \end{array} \right.
  1355. \end{equation}
  1356. and $2\Delta t$ is the leap frog time step of the model.
  1357. The convective precipitation rate
  1358. $P_{c}$ [m/s] of each cloud layer is
  1359. \begin{equation}
  1360. P_{c} = \frac{c_p\, \Delta p}{L\, g \, \rho_{H_2O}}
  1361. \frac{(\Delta T)^{cl}}{2\Delta t}
  1362. \end{equation}
  1363. where $\Delta p$ is the pressure thickness of the layer
  1364. and $\rho_{H_2O}$ is the density of
  1365. water. $(\Delta T)^{cl}$ is computed from
  1366. Eq.~\ref{handm} or Eq.~\ref{handm2},
  1367. respectively.
  1368. \subsection{Shallow Convection}
  1369. In addition to deep convection a shallow convection scheme is included.
  1370. Following Tiedtke (1983) shallow convection is parameterized by means of a
  1371. vertical diffusion of moisture and potential temperature (and, optional,
  1372. momentum). It is only applied, when the penetrative convection is not
  1373. operating due to the lack of moisture or (optional) if the unstable layer
  1374. is below a given threshold height(default is 700hPa). The numerical scheme
  1375. is similar to that of the normal vertical diffusion (see section \ref{vdiff}
  1376. but with a constant diffusion coefficient $K$ which is set to default of
  1377. 10 m$^2$/s within the cloud layer and
  1378. \begin{equation}
  1379. 10 \cdot \frac{rh_k -0.8}{1-0.8}(rh_{k+1}-rh_k)
  1380. \end{equation}
  1381. at cloud top (here $rh_k$ and $rh_{k+1}$
  1382. denote the relative humidity at level above the cloud and the uppermost
  1383. cloud level, respectively).$K=0.$ elsewhere. The diffusion is
  1384. limited to the lower part of the atmosphere up to a
  1385. given pressure (set to a default of
  1386. 700hPa). For the five level version, the
  1387. shallow convection is switched off.
  1388. \subsection{Large Scale Precipitation}
  1389. Large scale condensation occurs if the air is
  1390. supersaturated ($q > q_{sat}(T)$). Condensed water
  1391. falls out
  1392. instantaneously as precipitation. No storage of water
  1393. in clouds is considered. An iterative procedure is used
  1394. to compute final
  1395. values ($T^*$, $q^*$) starting from the
  1396. supersaturated state ($T$, $q$):
  1397. \begin{equation}\label{lsp1}
  1398. \begin{array}{rcl}
  1399. \D T^* & = & \D T + \frac{L}{c_p} \, \frac{q -
  1400. q_{sat}
  1401. (T)}{1+\frac{L}{c_p}\, \frac{dq_{sat}(T)}{dT}} \\
  1402. &&\\
  1403. \D q^* & = & \D q -\frac{q -
  1404. q_{sat}(T)}{1+\frac{L}{c_p}\,
  1405. \frac{dq_{sat}(T)}{dT}}
  1406. \end{array}
  1407. \end{equation}
  1408. where the suturation specific humidity $q_{sat}$ and
  1409. its derivative with respect to temperature
  1410. $dq_{sat}/dT$ are computed from Eqs.~\ref{qsat}.
  1411. $L$ is
  1412. either the latent heat of vapourisation or
  1413. the latent heat of sublimation depending on the
  1414. temperature.
  1415. $c_p$ is the specific
  1416. heat for moist air at constant pressure ($c_p= c_{pd} \,
  1417. [1+(c_{pv}/c_{pd}-1)\, q]$ where
  1418. $c_{pd}$ and $c_{pv}$ are the specific heats at
  1419. constant pressure for dry air and water vapor,
  1420. respectively). This calculation is repeated once using
  1421. ($T^*$,
  1422. $q^*$) as the new initial state. Finally, The
  1423. temperature
  1424. and moisture tendencies and the precipitation rate
  1425. $P_{l}$ [m/s] are computed:
  1426. \begin{equation}
  1427. \begin{array}{rcl}
  1428. \D \frac{\partial T}{\partial t} & = &
  1429. \D \frac{T^*-T}{2\Delta t} \\
  1430. &&\\
  1431. \D \frac{\partial q}{\partial t} & = &
  1432. \D \frac{q^*-q}{2\Delta t} \\
  1433. && \\
  1434. \D P_{l} & = & \D \frac{p_S \, \Delta \sigma}{g \,
  1435. {\rho}_{H_2O}} \frac{ (q-q^*)}{2\Delta t}
  1436. \end{array}
  1437. \end{equation}
  1438. where $p_S$ is the surface pressure, $\rho_{H_2O}$
  1439. is
  1440. the density of water, $\Delta \sigma$ is the layer
  1441. thickness and $2\Delta t$ is the leap frog time step of
  1442. the model.
  1443. \subsection{Cloud Formation}
  1444. Cloud cover and cloud liquid water content are
  1445. diagnostic quantities. The fractional cloud cover
  1446. of a grid box, $cc$, is parameterized following the ideas of Slingo and Slingo (1991) using the
  1447. relative humidity for the stratiform cloud amount $cc_s$ and the convective precipitation rate
  1448. $P_{c}$ [mm/d] for the convective cloud amount $cc_c$. The latter is given by
  1449. \begin{equation}
  1450. cc_c= 0.245 + 0.125 \ln{(P_c)}
  1451. \end{equation}
  1452. where $0.05 \le cc_c \le 0.8$.
  1453. Before computing the amount of stratiform clouds, the relative humidity $rh$ is multiplied by
  1454. $(1-cc_c)$ to account for the fraction of the grid box covered by convective clouds. If $cc_c \ge
  1455. 0.3$ and the cloud top is higher than $\sigma = 0.4$ ($\sigma=p/p_S)$, anvil cirrus is present
  1456. and the cloud amount is
  1457. \begin{equation}
  1458. cc_s=2\; (cc_c-0.3)
  1459. \end{equation}
  1460. High-, middle- and low-level stratiform cloud amounts are computed from
  1461. \begin{equation}
  1462. cc_s=f_{\omega} \left(\frac{rh-rh_c}{1-rh_c}\right)^2
  1463. \end{equation}
  1464. where $rh_c$ is a level depending critical relative
  1465. humidity. Optionally, a restriction of low-level stratiform cloud amount due to subsidence can
  1466. by introduced by the factor $f_{\omega}$ where $f_{\omega}$ is depends on the vertical
  1467. velocity
  1468. $\omega$. In the default version, $f_{\omega}$~=~1.
  1469. Cloud liquid water content $q_{H_2O}$ [kg/kg] is computed according to Kiehl et al. (1996):
  1470. \begin{equation}
  1471. q_{H_2O} = \frac{q^0_{H_2O}}{\rho} \exp{(-z/h_l)}
  1472. \end{equation}
  1473. where the reference value $q^0_{H_2O}$ is $0.21\cdot 10^{-3}$~kg/m$^3$, $\rho$ is the air
  1474. density, $z$ is the height
  1475. and the local cloud water scale height $h_l$~[m] is given by vertically integrated water vapor
  1476. (precipitable water)
  1477. \begin{equation}
  1478. h_l= 700 \ln{\left(1 + \frac{1}{g} \int\limits^{p_s}_0 q dp \; \right)}
  1479. \end{equation}
  1480. \subsection{Evaporation of Precipitation and Snow
  1481. Fall}
  1482. Possible phase changes of convective or large scale
  1483. precipitation within the atmosphere are considered by melting or freezing of the precipitation depending on the respective level temperature (using 273.16K as a threshold), and by evaporation parameterized in terms of the saturation deficit according to
  1484. \begin{equation}
  1485. E_0=-\frac{1}{\Delta t}\cdot \frac{\gamma\cdot(q_0-q_s)}{1+\frac{L\cdot dq_s/dT}{C_{pd}(1+(\delta-1)q_v)}}
  1486. \end{equation}
  1487. $\gamma$ is set to a default of 0.01 for T21L10 (0.006 T21L5, 0.007 T42L10).
  1488. \subsection{Dry Convective Adjustment}
  1489. Dry convective adjustment is performed for layers which are dry adiabatically unstable, e.g.
  1490. $\partial \theta / \partial p > 0$ where $\theta$ denotes the potential temperature. The adjustment
  1491. is done so that the total sensible heat of the respective column is conserved. Wherever dry
  1492. convection occurs, it is assumed that the moisture is completely mixed by the convective
  1493. process as well. The adjustment is done iteratively. The atmospheric column is scanned for
  1494. unstable regions. A new neutral stable state for the unstable region is computed which consists
  1495. of a potential temperature $\theta_N$ and specific humidity $q_N$:
  1496. \begin{equation}
  1497. \begin{array}{lcl}
  1498. \D \theta_N & = & \D \frac{\sum\limits_{l=l_1}^{l_2} T_l \; \Delta\sigma_l}
  1499. {\sum\limits_{l=l_1}^{l_2} \sigma_l^{\kappa} \; \Delta\sigma_l} \\
  1500. &&\\
  1501. \D q_N & = & \D \frac{\sum\limits_{l=l_1}^{l_2} q_l \; \Delta\sigma_l}
  1502. {\sum\limits_{l=l_1}^{l_2} \Delta\sigma_l} \\
  1503. \end{array}
  1504. \end{equation}
  1505. where $l_1$ and $l_2$ define the unstable region, $\sigma = (p/p_S)$ is the vertical coordinate,
  1506. $T$ and $q$ are temperature and specific humidity, respectively, and $\kappa$ is
  1507. $R_d$/$c_{pd}$ where $R_d$ and $c_{pd}$ are the gas constant and the specific heat for dry
  1508. air,
  1509. respectively.
  1510. The procedure is repeated starting from the new potential temperatures und moistures until all
  1511. unstable regions are removed. The temperature and moisture tendencies which enter the diabatic
  1512. time steps are then computed from the final $\theta_N$ and $q_N$
  1513. \begin{equation}
  1514. \begin{array}{lcl}
  1515. \D \frac{T_l^{t+\Delta t}-T_l^{t-\Delta t}}{2\Delta t} & = & \D \frac{\theta_N
  1516. \; \sigma_l^{\kappa} -T_l^{t-\Delta t}}{2\Delta t} \\
  1517. &&\\
  1518. \D \frac{q_l^{t+\Delta t}-q_l^{t-\Delta t}}{2\Delta t} & = & \D \frac{q_N - q_l^{t-\Delta
  1519. t}}{2\Delta t}
  1520. \end{array}
  1521. \end{equation}
  1522. \newpage
  1523. \section{Land Surface and Soil \label{landmod}}
  1524. The parameterizations for the land surface and the soil
  1525. include the calculation of temperatures
  1526. for the surface and the soil, a soil hydrology and a river
  1527. transport scheme. In addition, surface
  1528. properties like the albedo, the roughness length or the
  1529. evaporation efficiency are provided.
  1530. As, at the moment, coupling to an extra glacier
  1531. module is not available, glaciers are treated like
  1532. other land points, but with surface and soil properties
  1533. appropriate for ice. Optionally, A simple biome model can be used (simba).
  1534. \subsection{Temperatures}\label{surtemp}
  1535. The surface temperature $T_S$ is computed from
  1536. the linearized energy balance of the
  1537. uppermost $z_{top}$ meters of the ground:
  1538. \begin{equation} \label{land.1}
  1539. c_{top} \; z_{top} \; \frac{\Delta T_S}{\Delta t}
  1540. = F_S - G + \Delta T_S \; \frac{\partial (Q_a
  1541. -F_g)}{\partial T_S} - F_m
  1542. \end{equation}
  1543. $z_{top}$ is a prescribed parameter and set to a default
  1544. value of $z_{top}$~=~0.20~m.
  1545. $Q_a$ denotes the total heat flux from the atmosphere,
  1546. which consists of the sensible heat flux,
  1547. the latent heat flux, the net short wave radiation and the
  1548. net long wave radiation. $Q_g$ is the flux
  1549. into the deep soil. $Q_a$ and $Q_g$ are defined positive
  1550. downwards. $Q_m$ is the
  1551. snow melt heat flux and $c_{top}$ is the
  1552. volumetric heat capacity. Depending on the snow
  1553. pack, $z_{top}$ can partly or totally consist
  1554. of snow or soil solids:
  1555. $z_{top}=z_{snow}+z_{soil}$. Thus, the heat
  1556. capacity $c_{top}$ is a
  1557. combination of snow and soil heat capacities:
  1558. \begin{equation}
  1559. c_{top} =\frac{ c_{snow} \; c_{soil} \; z_{top}}{c_{snow} \; z_{soil} +
  1560. c_{soil} \; z_{snow}}
  1561. \end{equation}
  1562. The default value of
  1563. $c_{snow}$ is
  1564. 0.6897~$\cdot$~10$^{6}$~J/(kg K) using a snow
  1565. density
  1566. of 330~kg/m$^3$. $c_{soil}$ is set to a default value
  1567. of 2.07~$\cdot$~10$^{6}$~J/(kg K) for
  1568. glaciers and to a value of 2.4~$\cdot$~10$^{6}$~J/(kgK) otherweise.
  1569. Below $z_{top}$ the soil column is discretized into
  1570. $N$ layers with thickness $\Delta z_i$,
  1571. where layer $1$ is the uppermost of the soil
  1572. layers. The default values for the model are $N$~=~5
  1573. and $\Delta z$~=~(0.4~m, 0.8~m, 1.6~m,
  1574. 3.2~m, 6.4~m). The heat flux into layer 1, $Q_g$, is
  1575. given by
  1576. \begin{equation}
  1577. Q_g=\frac{2 k_{1}}{\Delta z_{1}} (T_S - T_{1})
  1578. \end{equation}
  1579. where $k_{1}$ and $T_{1}$ are the thermal
  1580. conductivity and the temperature.
  1581. If the snow depth is greater than $z_{top}$, the
  1582. thermal properties of snow are blended with the
  1583. first soil layer to create a snow/soil layer with
  1584. thickness $z_{snow}-z_{top}+\Delta z_1$. The
  1585. thermal conductivity $k_1$ and heat capacity
  1586. $c_1$ of a snow/soil layer are
  1587. \begin{equation}
  1588. \begin{array}{rcl}
  1589. \D k_1 & = & \D \frac{k_{snow}\; k_{soil}\; (\Delta
  1590. z_1+z_{snow}-z_{top})}{k_{snow}\; \Delta z_1 +
  1591. k_{soil}\; (z_{snow}-z_{top})} \\
  1592. &&\\
  1593. \D c_1 & = & \D \frac{c_{snow}\; c_{soil}\; (\Delta
  1594. z_1+z_{snow}-z_{top})}{c_{snow}\; \Delta z_1 +
  1595. c_{soil}\; (z_{snow}-z_{top})}
  1596. \end{array}
  1597. \end{equation}
  1598. with default values of $k_{snow}$~=~0.31~W/(m K),
  1599. $k_{soil}$~=~2.03~W/(m K) for
  1600. glaciers and $k_{soil}$~=~7~W/(m K) otherweise.
  1601. After the surface temperature $T_S$ has been
  1602. calculated
  1603. from Eq.~\ref{land.1}, snow melts when $T_S$ is
  1604. greater than the freezing temperature $T_{melt}$. In this
  1605. case, $T_S$ is set to $T_{melt}$ and a new atmospheric
  1606. heat
  1607. flux $Q_a(T_{melt})$ is calculated from $Q_a$ and
  1608. $\partial Q_a/\partial T_S$. If the energy inbalance is
  1609. positive ($Q_a(T_{melt}) > c_{top} \; z_{top}\; (T_{melt} -
  1610. T_S^{t})/\Delta t$; where $T_S^{t}$ is the surface
  1611. temperature at
  1612. the previous time step), the
  1613. snow melt heat flux $Q_m$ is
  1614. \begin{equation}\label{melt}
  1615. Q_m=\max(Q_a(T_{melt}) - \frac{c_{top} \; z_{top}}{\Delta
  1616. t} \; (T_{melt} - T_S^{t}), \; \frac{W_{snow} \; L_f}{\Delta t})
  1617. \end{equation}
  1618. where $W_{snow}$ is the mass of the snow water of
  1619. the
  1620. total snow pack and $L_f$ is the latent heat of fusion.
  1621. Any excess of energy is used to warm the soil.
  1622. With the heat flux $F_z$ at depth $z$ of the soil
  1623. \begin{equation}
  1624. F_z = -k \; \frac{\partial T}{\partial z}
  1625. \end{equation}
  1626. one dimensional energy conservation requires
  1627. \begin{equation}
  1628. c\; \frac{\partial T} {\partial t} = - \frac{\partial
  1629. F_z}{\partial
  1630. z}= \frac{\partial}{\partial z} \left [ k \;
  1631. \frac{\partial T}{\partial z} \right]
  1632. \end{equation}
  1633. where $c$ is the volumetric soil heat capacity, $T$
  1634. is the soil temperature, and $k$ is the
  1635. thermal conductivity.
  1636. In the model, thermal properties (temperature,
  1637. thermal conductivity, volumetric heat capacity) are
  1638. defined at the center of each layer. Assuming the
  1639. heat flux from $i$ to the interface $i$ and $i+1$
  1640. equals the heat flux from the interface to $i+1$, the
  1641. heat flux $F_i$ from layer $i$ to layer $i+1$
  1642. (positive downwards) is given by
  1643. \begin{equation}
  1644. F_i= - \frac{2\; k_i\; k_{i+1} (T_i -
  1645. T_{i+1})}{k_{i+1} \; \Delta z_i + k_i\; \Delta z_{i+1}}
  1646. \end{equation}
  1647. The energy balance for layer $i$ is
  1648. \begin{equation}
  1649. \frac{c_i\; \Delta z_i}{\Delta t} \; (T_i^{t+\Delta t} -
  1650. T_i ^{t}) = F_i - F_{i-1}
  1651. \end{equation}
  1652. The boundary conditions are zero flux at the bottom
  1653. of the soil column and heat flux $F_g$ at the top.
  1654. This equation is solved implicitly using fluxes
  1655. $F_i$ evaluated at $t+\Delta t$
  1656. \begin{equation}
  1657. \begin{array}{lclcl}
  1658. \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
  1659. T_i ^{t}) & = &\D \frac{k_i k_{i+1}
  1660. (T_{i+1}^{t+\Delta
  1661. t} - T_i^{t+\Delta t})}{k_{i+1} \Delta z_i + k_i
  1662. \Delta z_{i+1}} + G & for & \D i = 1 \\
  1663. & & & & \\
  1664. \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
  1665. T_i ^{t}) & = &\D \frac{k_i k_{i+1}
  1666. (T_{i+1}^{t+\Delta
  1667. t} - T_i^{t+\Delta t})}{k_{i+1} \Delta z_i + k_i
  1668. \Delta z_{i+1}} + \frac{k_i k_{i-1} (T_{i-
  1669. 1}^{t+\Delta t} - T_i^{t+\Delta t})}{k_{i-1} \Delta
  1670. z_i + k_i \Delta z_{i-1}} & for & \D 1 < i < N \\
  1671. & & & & \\
  1672. \D \frac{c_i \Delta z_i}{\Delta t} (T_i^{t+\Delta t} -
  1673. T_i ^{t}) & = &\D \frac{k_i k_{i-1} (T_{i-
  1674. 1}^{t+\Delta t} - T_i^{t+\Delta t})}{k_{i-1} \Delta
  1675. z_i + k_i \Delta z_{i-1}} & for & \D i = N
  1676. \end{array}
  1677. \end{equation}
  1678. resulting in a linear system for the $T_i^{t+\Delta
  1679. t}$.
  1680. \subsection{Soil Hydrology}\label{hydro}
  1681. The parameterization of soil hydrology comprises the
  1682. budgets for snow amount and the soil
  1683. water amount. The water equivalent of the snow layer
  1684. $z_{snow}^{H_2O}$ is computed over
  1685. land and glacier areas from
  1686. \begin{equation}
  1687. \frac{\partial z_{snow}^{H_2O}}{\partial t} = F_q +
  1688. P_{snow}-M_{snow}
  1689. \end{equation}
  1690. where $F_q$ is the evaporation rate over snow
  1691. computed from Eq.~\ref{fluxes2}, $P_{snow}$ is the
  1692. snow fall and $M_{snow}$ is the snow
  1693. melt rate (all fluxes are positive downward and in m/s).
  1694. $M_{snow}$ is related to the snow melt
  1695. heat flux $Q_m$ (Eq.~\ref{melt}) by
  1696. \begin{equation}
  1697. M_{snow}=\frac{Q_m}{\rho_{H_2O}\, L_f}
  1698. \end{equation}
  1699. where $L_f$ is the latent heat of fusion.
  1700. The soil water reservoir $W_{soil}$ [m] is
  1701. represented by a single-layer bucket model
  1702. (Manabe 1969). Soil water is increased by precipitation
  1703. $P$ and snow melt $M_{snow}$
  1704. and is depleted by the surface evaporation $F_q$:
  1705. \begin{equation}
  1706. \frac{\partial W_{soil}}{\partial t} = P + M + F_q
  1707. \end{equation}
  1708. where all fluxes are defined positive downwards and in
  1709. m/s.
  1710. Soil water is limited by a field capacity $W_{max}$
  1711. which geographical distribution can be prescribed via an external input or is set to a default
  1712. value of
  1713. 0.5~m everywhere. If the soil water
  1714. exceeds $W_{max}$ the excessive
  1715. water builds the runoff $R$ and is provided to the river
  1716. transport scheme
  1717. (Section~\ref{runoff}). The ratio of the soil water and
  1718. the field capacity defines the wetness
  1719. factor $C_w$ which is used in Eq.~\ref{fluxes2} to
  1720. compute the surface evaporation:
  1721. \begin{equation}\label{cwgl}
  1722. C_w=\frac{W_{soil}}{f_{Cw} \; W_{max}}
  1723. \end{equation}
  1724. where the factor $f_{Cw}$ (with a default value of 0.25) takes into account that maximum
  1725. evaporation will take place even if the bucket is not completely filled. For land points covered
  1726. by glaciers, $C_w$ is set to a
  1727. constant value of 1.
  1728. \subsection{River Transport}\label{runoff}
  1729. The local runoff is transported to the ocean by a river
  1730. transport scheme with linear advection
  1731. (Sausen et al.~1994). For each grid box (both, land and
  1732. ocean costal points) the river water
  1733. amount $W_{river}$ [m$^3$] is computed from
  1734. \begin{equation}
  1735. \frac{\partial W_{river}}{\partial t}= ADV + area \; (R - S)
  1736. \end{equation}
  1737. where $R$ is the local runoff (Section~\ref{hydro}),
  1738. $S$ is the input into the ocean, $ADV$
  1739. is the advection of river water and $area$ is the area of the
  1740. respective grid box. The input into
  1741. the ocean $S$ is given by
  1742. \begin{equation}
  1743. S=\left\{ \begin{array}{ll} 0 & \mbox{for land points}
  1744. \\
  1745. &\\
  1746. ADV & \mbox{for ocean points} \end{array}
  1747. \right.
  1748. \end{equation}
  1749. This ensures that $S$ is non-zero only for ocean costal
  1750. points. The advection from grid box
  1751. $(i,j)$ into grid box $(i',j')$, $ADV_{(i,j)\rightarrow
  1752. (i',j')}$, is formulated using an upstream
  1753. scheme:
  1754. \begin{equation}
  1755. \begin{array}{rcl}
  1756. \D ADV_{(i,j)\rightarrow (i+1,j)} & = & \D \left\{
  1757. \begin{array}{ll} u_{i,j} W_{i,j}, & \mbox{if } \;
  1758. u_{i,j} \ge 0 \\
  1759. & \\
  1760. u_{i,j} W_{i+1,j}, & \mbox{if } \;
  1761. u_{i,j} < 0 \end{array} \right. \\
  1762. && \\
  1763. \D ADV_{(i,j)\rightarrow (i,j+1)} & = & \D \left\{
  1764. \begin{array}{ll} -v_{i,j} W_{i,j}, & \mbox{if } \;
  1765. v_{i,j} \le 0 \\
  1766. & \\
  1767. -v_{i,j} W_{i,j+1}, & \mbox{if } \;
  1768. v_{i,j} > 0 \end{array} \right. \\
  1769. \end{array}
  1770. \end{equation}
  1771. where $i$ and $j$ are the zonal and meridional indices
  1772. of the grid box, which are counted
  1773. from the west to the east and from the north to the
  1774. south, respectively. The zonal and
  1775. meridional advection rates $u_{i,j}$ and $v_{i,j}$ are
  1776. defined at the interface of two grid
  1777. boxes and depend on the slope of the orography:
  1778. \begin{equation}
  1779. \begin{array}{rcl}
  1780. \D u_{i,j} & = & \D \frac{c}{\Delta
  1781. x}\left[\frac{h_{i,j}-h_{i+1,j}}{\Delta
  1782. x}\right]^{\alpha} \\
  1783. && \\
  1784. \D v_{i,j} & = & \D \frac{c}{\Delta
  1785. y}\left[\frac{h_{i,j+1}-h{i,j}}{\Delta
  1786. y}\right]^{\alpha}
  1787. \end{array}
  1788. \end{equation}
  1789. where $\Delta x$ and $\Delta y$ are the distances
  1790. between the grid points in the longitudinal
  1791. and the meridional direction. $h$ is the height of the
  1792. orography, which is modified in
  1793. order to omit local minima at land grid points. The
  1794. empirical constants $c$ and $\alpha$ are
  1795. set to the values given by Sausen et al.~(1994) for T21
  1796. resolution ($c = $~4.2~m/s and
  1797. $\alpha =$~0.18).
  1798. \subsection{Other Land Surface
  1799. Parameter}\label{landsurf}
  1800. Some additional quantities characterizing the land surface of
  1801. each grid box need to be specified for use in the model. The land-sea mask and the orography
  1802. are read from an external file. Optionally, this file may also include other climatological surface
  1803. parameter: the global distribution of the surface roughness length $z_0$, a background albedo
  1804. ${\cal R}_S^{clim}$, a glacier mask for permanent ice sheets, the bucked size for the soil water
  1805. $W_{max}$ (see section above) and a climatological annual cycle of the soil wetness
  1806. $C^{clim}_w$ (which may be used instead of the computed $C_w$ from Eq.~\ref{cwgl}. If
  1807. there is no input for the particular field in the file, the parameter is set to be horizontal
  1808. homogeneous with a specific value. The following defaults are used: $z_0$~=~ 2~m,
  1809. ${\cal R}_S^{clim}$~=~0.2, no glaciers, $W_{max}$~=~0.5 and $C^{clim}_w$~=~0.25.
  1810. For snow covered areas, the background albedo is modified to give the actual albedo ${\cal
  1811. R}_S$
  1812. which is used in the radiation scheme. For points, which are not covered by glaciers, ${\cal
  1813. R}_S$ is
  1814. given by
  1815. \begin{equation}
  1816. {\cal R}_S={\cal R}_S^{clim} + ({\cal R}_S^{snow}-{\cal R}_S^{clim}) \;
  1817. \frac{z_{snow}}{z_{snow} + 0.01}
  1818. \end{equation}
  1819. where $z_{snow}$ is the snow depth, and the albedo of the snow, ${\cal R}_S^{snow}$,
  1820. depends on
  1821. the surface temperature $T_S$
  1822. \begin{equation}\label{rsnow}
  1823. {\cal R}_S^{snow}={\cal R}_{max}^{snow} + ({\cal R}_{min}^{snow} - {\cal
  1824. R}_{max}^{snow}) \; \frac{T_S -
  1825. 263.16}{10}
  1826. \end{equation}
  1827. with ${\cal R}_{min}^{snow} \le {\cal R}_S^{snow} \le {\cal R}_{max}^{snow}$ and default
  1828. values
  1829. ${\cal R}_{min}^{snow}$~=~0.4 and ${\cal R}_{max}^{snow}$~=~0.8.
  1830. For glaciers, ${\cal R}_S$ is given by ${\cal R}_S^{snow}$ from Eq.~\ref{rsnow} but with a
  1831. default
  1832. ${cal R}_{min}^{snow}$~=~0.6.
  1833. The surface specific humidity $q_S$ is given by the saturation specific humidity at $T_S$:
  1834. \begin{equation}
  1835. q_S =q_{sat}(T_S)
  1836. \end{equation}
  1837. where $q_{sat}(T_S)$ is computed from
  1838. Eq.~\ref{qsat}.
  1839. \section{Sea Surface}\label{seasurf}
  1840. Sea surface temperatures $T_{sea}$, sea ice distributions
  1841. $c_{ice}$ and surface temperatures over
  1842. sea ice $T_i$ are provided by the ocean and sea
  1843. ice modules (Section HEIKO). From
  1844. these quantities, the following additional parameter are
  1845. computed which enter the atmospheric
  1846. parameterizations. The prescribed surface albedo ${\cal R_S}$
  1847. for open water is set to a default value of
  1848. 0.069. For sea ice ${\cal R}_S$ is given as a function of the ice
  1849. surface temperature $T_{i}$:
  1850. \begin{equation}
  1851. {\cal R}_S=\min{({\cal R}_S^{max}, \, 0.5 + 0.025 \, (273. - T_{i}))}
  1852. \end{equation}
  1853. where the prescribed maximum sea ice background
  1854. albedo ${\cal R}_S^{max}$ is set to a default value
  1855. of 0.7.
  1856. The surface
  1857. specific humidity $q_S$ is given by the
  1858. saturation specific humidity at the surface
  1859. temperature $T_S$ which is either $T_{sea}$ or
  1860. $T_{i}$:
  1861. \begin{equation}
  1862. q_S =q_{sat}(T_S)
  1863. \end{equation}
  1864. where $q_{sat}(T_S)$ is computed from
  1865. Eq.~\ref{qsat}. The wetness factor $C_w$ which
  1866. enters
  1867. the calculation of the surface evaporation
  1868. (Eq.~\ref{fluxes2}) is set to 1.
  1869. The roughness length $z_0$ over sea ice is set to a
  1870. constant value of $z_0$~=~0.001~m. Over open
  1871. water,
  1872. $z_0$ is computed from the Charnock (1955) formula:
  1873. \begin{equation}
  1874. z_0 = C_{char} \frac{u_{*}^{2}}{g}
  1875. \end{equation}
  1876. with a minimum value of $1.5 \cdot 10^{-5}$~m.
  1877. $C_{char}$ denotes the Charnock constant and is set
  1878. to
  1879. 0.018. $g$ is the gravitational acceleration. The
  1880. friction
  1881. velocity $u_{*}$ is calculated from the surface wind
  1882. stress at the previous time level:
  1883. \begin{equation}
  1884. u_{*}=\sqrt{\frac{|F_u, F_v|}{\rho} }
  1885. \end{equation}
  1886. where $|F_u, F_v| $ is the absolute value of the surface
  1887. wind stress computed from Eq.~\ref{fluxes2} and
  1888. $\rho$
  1889. is the density.
  1890. \newpage
  1891. \section{References}
  1892. Berger, A., 1978a: A simple algorithm to compute
  1893. long-term
  1894. variations of daily insolation. Institute of Astronomy
  1895. and
  1896. Geophysic, Universite Catholique de Louvain, {\bf
  1897. Contribution
  1898. 18}, Louvain-la-Neuve, Belgium.
  1899. Berger, A., 1978b: Long-term variations of daily
  1900. insolation
  1901. and quaternary climatic change. {\it J.~Atmos.~Sci.},
  1902. {\bf 35}, 2362-
  1903. 2367.
  1904. Blackadar, A.~K., 1962: The vertical distributionof
  1905. wind and turbulent exchange in a neutral
  1906. atmosphere. {\it J.~Geophys.~Res.}, {\bf 67},
  1907. 3095-3102.
  1908. Boer, G.~J., N.~A.~McFarlane, R.~Laprise,
  1909. J.~Henderson and J.-P.~Blanchet, 1984: The
  1910. Canadian Climate Centre spectral atmospheric general
  1911. circulation model. {\it
  1912. Atmosphere-Ocean},
  1913. {\bf 22}, 397-429.
  1914. Charnock, M., 1955: Wind stress on a water surface.
  1915. {\it Q.~J.~R.~Meteorol.~Soc.}, {\bf
  1916. 81}, 639-640.
  1917. Chou, M.-D., M.~J.~Suarez, X.-Z.~Liang and M.~M.~H.~Yan, 2001 (Revised 2002):
  1918. A thermal infrared radiation
  1919. parameterization for atmospheric studies. {\it Technical Report Series on Global Modelling and
  1920. Data Assimilation, M.~J.~Suarez Ed.}, {\bf NASA/TM-2001-104606, Vol.
  1921. 19}, 55pp.
  1922. Green, A.~E.~S., 1964: Attenuation by ozone and the earth's albedo in the middle ultraviolet.
  1923. {\it AAppl.~Opt.}, {\bf 3}, 203-208.
  1924. Katayama, A., 1972: A simplified scheme for
  1925. computing
  1926. radiative transfer in the troposphere.
  1927. Department
  1928. of Meteorology, {\it Tech.~Report}, {\bf No. 6},
  1929. University of California, Los Angeles, CA,
  1930. 77 pp.
  1931. Kiehl, J.~T., J.~J.~Hack, G.~B.~Bonan, B.~A.~Boville, B.~P.~Briegleb, D.~L.~Williamson
  1932. and
  1933. P.~J.~Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). {\it NCAR
  1934. Technical Note}, {\bf NCAR/TN-420+STR}, 152pp.
  1935. Kuo, H.~L., 1965: On formation and intensification of
  1936. tropical cyclones through latent heat
  1937. release by cumulus convection. {\it J.~Atmos.~Sci.},
  1938. {\bf 22}, 40-63.
  1939. Kuo, H.~L., 1974: Further studies of the
  1940. parameterization of the influence of cumulus
  1941. convection on large-scale flow. {\it J.~Atmos.~Sci.},
  1942. {\bf 31}, 1232-1240.
  1943. Lacis, A.~A., and J.~E.~Hansen, 1974: A parameterization for the absorption of solar
  1944. radiation in the Earth's atmosphere. {\it J.~Atmos.~Sci.}, {\bf 31}, 118-133.
  1945. Laurson, L.~and E.~Eliasen, 1989: On the effects of
  1946. the damping mechanisms in an
  1947. atmospheric general circulation model. {\it Tellus},
  1948. {\bf 41A}, 385-400.
  1949. Louis, J.~F., 1979: A parametric model of vertical
  1950. eddy fluxes in the atmosphere.
  1951. {\it Boundary Layer Meteorology}, {\bf 17}, 187-202.
  1952. Louis, J.~F., M.~Tiedtke and M.~Geleyn, 1982: A
  1953. short history of the PBL parameterisation
  1954. at ECMWF. Proceedings, ECMWF workshop on
  1955. planetary boundary layer parameterization,
  1956. Reading, 25-27 Nov. 81, 59-80.
  1957. Lowe, P.~R., 1977: An approximating polynomial for
  1958. the computation of saturation vapour
  1959. pressure. {\it J.~Appl.~Met.}, {\bf 16}, 100-103.
  1960. Manabe, S.~and F.~M\"oller, 1961: on the radiative
  1961. equilibrium and heat balance of the
  1962. atmosphere. {\it Mon~Wea.~Rev.}, {\bf 89}, 503-532.
  1963. Manabe, S., 1969: Climate and ocean circulation. I.
  1964. The atmospheric circulation and the
  1965. hydrology of the earth's surface. {\it
  1966. Mon.~Wea.~Rev.}, {\bf 97}, 739-774.
  1967. Miller, M.~J., A.~Beljaars and T.~N.~Palmer, 1992: The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. {\it
  1968. J.~Climate}, {\bf 5}, 418-434.
  1969. Rodgers, C.~D., 1967: The use of emissivity in the
  1970. atmospheric radiation calculation.
  1971. {\it Q.~J.~R.~Meteorol.~Soc.}, {\bf 93}, 43-54.
  1972. Roeckner, E., K.~Arpe, L.~Bengtsson, S.~Brinkop,
  1973. L.~D\"umenil, M.~Esch, E.~Kirk,
  1974. F.~Lunkeit, M.~Ponater, B.~Rockel, R.~Sausen,
  1975. U.~Schlese, S.~Schubert and
  1976. M.~Windelband,
  1977. 1992: Simulation of the present-day climate with the
  1978. ECHAM-3 model: Impact of model
  1979. physics
  1980. and resolution. Max-Planck Institut f\"ur Meteorologie,
  1981. {\bf Report No.~93}, 171pp.
  1982. Sasamori, T., 1968: The radiative cooling calculation
  1983. for application to general circulation
  1984. experiments. {\it J.~Appl.~Met.}, {\bf 7}, 721-729.
  1985. Sausen, R., S.~Schubert and L.~D\"umenil, 1994: A
  1986. model of river runoff for use in coupled
  1987. atmosphere-ocean models. {\it Journal of Hydrology},
  1988. {\bf 155}, 337-352.
  1989. Slingo, A., and J.~M.~Slingo, 1991: Response of the National Center for Atmospheric Research
  1990. community climate model to improvements in the representation of clouds. {\it
  1991. J.~Geoph.~Res.}, {\bf 96}, 341-357.
  1992. Stephens, G.~L., 1978: Radiation profiles in extended water clouds. II: Parameterization
  1993. schemes. {\it J.~Atmos.~Sci.}, {\bf 35}, 2123-2132.
  1994. Stephens, G.~L., 1984: The parameterization of
  1995. radiation for numerical weather prediction
  1996. and
  1997. climate models. {\it Mon.~Wea.~Rev.}, {\bf 112},
  1998. 826-867.
  1999. Stephens, G.~L., S.~Ackermann and E.~A.~Smith, 1984: A shortwave parameterization revised
  2000. to improve cloud absorption. {\it J.~Atmos.~Sci.}, {\bf 41}, 687-690.
  2001. Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proceedings of the ECMWF Workshop on Convection in {\it Large-Scale Models, 28 November-1 December 1983, European Centre for Medium-Range Weather Forecasts, Reading, England}, 297-316.