ice.tex 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. \newtheorem{fig}{\vspace{-10pt} Figure}
  2. \newtheorem{tab}{\hspace{-5pt} Table}
  3. \def \dt{\Delta t}
  4. \def \dz{\Delta z}
  5. \def \eps{\varepsilon}
  6. \def \degrees{^\circ}
  7. \def \bc{\begin{center}}
  8. \def \ec{\end{center}}
  9. \def \be{\begin{equation}}
  10. \def \ee{\end{equation}}
  11. \def \ba{\begin{array}}
  12. \def \ea{\end{array}}
  13. \def \bt{\vspace{2mm} \begin{tabular}}
  14. \def \et{\end{tabular}}
  15. \def \bd{\begin{displaymath}}
  16. \def \ed{\end{displaymath}}
  17. \def \bi{\begin{itemize}}
  18. \def \ei{\end{itemize}}
  19. \def \ben{\begin{enumerate}}
  20. \def \een{\end{enumerate}}
  21. \def \bc{\begin{center}}
  22. \def \ec{\end{center}}
  23. \def \di{\displaystyle}
  24. \def \bgf{\begin{figure} \bc}
  25. \def \bgfh{\begin{figure}[h] \bc}
  26. \def \bgft{\begin{figure}[t] \bc}
  27. \def \bgfb{\begin{figure}[b] \bc}
  28. \def \bgfht{\begin{figure}[ht] \bc}
  29. \def \bgfhb{\begin{figure}[hb] \bc}
  30. \def \ef{\ec \end{figure}}
  31. \def \btb{\begin{table} \bc}
  32. \def \btbh{\begin{table}[h] \bc}
  33. \def \btbht{\begin{table}[ht] \bc}
  34. \def \etb{\ec \end{table}}
  35. \chapter{Model Description}
  36. The sea ice model is based on the zero layer model of
  37. \cite{semtner1976}. This model
  38. computes the thickness of the sea ice from the thermodynamic
  39. balances at the top and the bottom of the sea ice.
  40. The zero layer assumes the temperature gradient in the ice to
  41. be linear and eliminates the capacity of the ice to store heat.
  42. Nevertheless, it has been used successfully in areas where ice
  43. is mostly seasonal and thus relatively thin ($\rm <\, 1\, m$)
  44. \cite{beckmann2001}.
  45. Thus, the model is expected to perform better in the Southern
  46. Ocean than in the Arctic, where multiyear, thick ice dominates. Sea ice is formed if the ocean
  47. temperature drops below the freezing point
  48. (set to 271.25 K) and is melted whenever the ocean temperature increases above this point. The prognostic
  49. variables are the sea ice temperature $T_i$, the ice
  50. thickness $h_i$ and the ice concentration $A$, which
  51. in the present model is boolean: A given grid point is either
  52. ice free ($A=0$) or ice covered ($A=1$).
  53. Freezing and melting of sea ice releases just the right amount of latent heat
  54. of fusion to close the energy balance with respect to the total heat flux
  55. $Q$ in the mixed layer \cite{parkinson1979}:
  56. \be
  57. Q\, +\rho_i\, L_i\, \frac{\partial h_i}{\partial t} =\, 0,
  58. \label{hieq}
  59. \ee
  60. where $\rho_i$ is the density of sea ice
  61. and $L_i$ denotes the latent heat
  62. of fusion of sea ice. Standard parameter values are given in
  63. Table \ref{iceparatab}. \cite{parkinson1979} Thus, the prognostic
  64. equation for the sea ice thickness is given as
  65. \be
  66. {\di \frac{\partial h_i}{\partial t} = \frac{-Q}{\rho_i \, L_i}.}
  67. \label{hi_eq}
  68. \ee
  69. It is assumed that melting of sea ice takes place from above only, while
  70. freezing takes place at the lower side of the ice floe.
  71. \section*{Basic equations}
  72. In the presence of sea ice, the heat fluxes are defined as follows.
  73. The total heat flux $Q\, \rm (W\, m^{-2})$ is given as
  74. \be
  75. Q \,=\, Q_a\, +Q_c\, +Q_o\, +\tilde{Q},
  76. \ee
  77. where $Q_a$ is the atmospheric heat flux,
  78. $Q_c$ is the conductive heat flux through the ice, $Q_o$ denotes the oceanic
  79. heat
  80. flux and $\tilde{Q}$ is the flux correction. The atmospheric heat flux
  81. \be
  82. Q_a = \left\{ \ba{lcr}
  83. \, F_T\, +L\, +R_{s,\downarrow}\, +R_{s,\uparrow}\,
  84. +R_{l,\downarrow}\, +R_{l,\uparrow}\, & {\rm if} & T_s > T_f, \\
  85. 0 & {\rm if} & T_s \le T_f.
  86. \ea \right. \label{qa_eq}
  87. \ee
  88. is the sum of sensible ($F_T$) and latent heat flux ($L$), the incoming and
  89. reflected short wave radiation ($R_{s,\downarrow}\, R_{s,\uparrow}$)
  90. and the long wave radiation ($R_l$). It is set to zero in the case of freezing,
  91. where the conductive heat flux applies (see below).
  92. The conductive heat flux through the ice
  93. \be
  94. Q_c = \left\{ \ba{lcr}
  95. 0 & {\rm if} & T_s > T_f, \\
  96. {\di \frac{\bar{\kappa}}{h_i\, +h_s}\, (T_s -T_f)} & {\rm if} & T_s \le T_f.
  97. \ea \right. \label{qc_eq}
  98. \ee
  99. is set to zero in the case of melting ice, as the ice melts at the top.
  100. $\bar{\kappa}$ is the mean conductivity
  101. of the sea ice floe and snow cover (with depth = $h_s$), computed as
  102. \be
  103. {\di \bar{\kappa}\, =\, \frac{\kappa_i h_i\, +\kappa_s h_s}{h_i\, +h_s}}.
  104. \label{eq_kap}
  105. \ee
  106. where $\kappa_i$ and $\kappa_s$ are the conductivities of sea ice and snow, respectively.
  107. Commonly, the oceanic heat flux $Q_o$ is parameterized in terms
  108. of the difference between the freezing temperature and the temperature
  109. of the ocean (mixed layer or deep ocean). $Q_o$ sets an upper value for
  110. the ice thickness and, thus, limits the ice growth. However, to avoid
  111. artificial sources or sinks of heat the oceanic heat flux $Q_o$ is set
  112. to zero in the present model. The ice thickness is limited to a prescribed
  113. value $h_{max}$ (default = 9m) by setting $\bar{\kappa} = 0$
  114. (i.e. $Q_c$ = 0) for $h_i > h_{max}$.
  115. The flux correction $\tilde{Q}$, if applied, is used to
  116. constrain the sea ice to a given distribution.
  117. It is obtained from the (monthly) climatology of an uncoupled
  118. (prescribed ice) simulation as
  119. \be
  120. \tilde{Q}=<\rho_i L_i \frac{h_{clim}-h_i}{\Delta t}>
  121. \ee
  122. where $h_{clim}$ is the (prescribed) climatological ice, $\Delta t$
  123. is the models time step and $<...>$ denotes a climatological (monthly) average.
  124. In the case of melting, the ice thickness may become negative if the
  125. energy available for melting is greater than needed to
  126. melt the present ice. Then, the surplus energy is heating the
  127. sea water, setting the surface temperature to
  128. \be
  129. {\di T_s\, =\, T_f\, -\frac{\rho_i\, L_i\, h_i}{\rho_w\, c_{p_s}\, h_{mix}} },
  130. \ee
  131. with $h_i < 0$.
  132. \section*{Ice formation, freezing and melting}
  133. If the surface temperature of open ocean water is below the freezing point,
  134. sea ice is formed. The heat flux available for freezing is given as
  135. \be
  136. Q_f\, =\, {\di \frac{\rho_w\, c_{p_w}\, h_{ml}}{\Delta t} \, (T_s\, -T_f)}
  137. \ee
  138. where $\rho_w$ is the density of sea water,
  139. $c_{p_w}$ is the specific heat of sea water and
  140. $h_{ml}$ denotes the mixed layer depth. The thickness of the new
  141. formed ice sheet is calculated by setting $Q\, =\, Q_f\, +\tilde{Q}$
  142. in (\ref{hieq}). Since the model differentiates only between
  143. no ice and full ice, a
  144. minimum ice thickness $h_{i,min}$ (default = 0.1m) needs to be present
  145. before a grid point is treated as ice covered (compactness $A$ = 1).
  146. If $h_i$ is less than $h_{i,min}$ the heat flux $Q_a+\tilde{Q}$ is used
  147. to build (or melt) ice. If $h_i > h_{i,min}$ a ice surface temperature
  148. ($T_i$) is computed (see below) and, if $T_i < T_f$, ice growths according
  149. to $Q_c + \tilde{Q}$. Ice is diminished if the ice surface temperature
  150. would be above freezing point.
  151. \section*{Sea ice temperature}
  152. If a grid point is covered by sea ice (i.e.~$h_i > h_{i,min}$) a sea ice surface temperature $T_i$ is calculated from the energy balance
  153. at the ice surface. To avoid numerical problems (due to large changes of $T_i$ within one time step), the energy balance equation is solved for an upper layer of the ice/snow column which has a heat capacity, $c_p^{\star}$, similar to that of $h_{i,min}$ pure ice ($c_p^{\star}=h_{i,min} c_{p_i} \rho_i$):
  154. \be
  155. {\di c_p^{\star}
  156. \frac{\partial T_i}{\partial t} -Q_b = 0 \Rightarrow
  157. \frac{\partial T_i}{\partial t} =
  158. \frac{Q_b}{c_p^{\star}}}
  159. \label{ti_eq}
  160. \ee
  161. where $Q_b\, =\, Q_a\, +Q_c$ with $Q_a$ as defined in (\ref{qa_eq}) and $Q_c$ from (\ref{qc_eq}). Eq.~(\ref{ti_eq}) is solved using an implicit formulation for the conductive heat flux $Q_c$.
  162. \section*{Snow cover}
  163. If a grid point is covered by sea ice, snow fall is accumulated on top of the ice. Snow cover effects the albedo and the heat conductivity (according to eq.~(\ref{eq_kap})). Snow is converted to sea ice if there is sufficient snow to suppress the ice/snow interface below the sea level. The conversion conserves mass. The new ice ($h_i^{new}$) and snow ($h_s^{new}$) thicknesses are given by:
  164. \begin{eqnarray}
  165. h_i^{new} & = &\frac{\rho_s h_s + \rho_i h_i}{\rho_w} \\
  166. h_s^{new} & = & \frac{\rho_w - \rho_i}{\rho_s} h_i^{new}
  167. \end{eqnarray}
  168. Where $\rho_w$ and $\rho_s$ are the densities of sea water and snow, respectively.
  169. If the surface temperature
  170. is above freezing point, first the snow is melted, then the ice. Snow melts
  171. according to
  172. \be
  173. {\di \frac{dh_s}{dt}\, =\, \frac{Q_a}{\rho_s\,L_{sn}},}
  174. \ee
  175. where $\rho_s\, \rm (kg/m^{3})$ is the density of snow and
  176. $L_{sn}\,\rm (J/kg)$ is the latent heat of fusion of snow.
  177. If the atmospheric
  178. heat flux is so large that it melts all the snow, then the remaining energy
  179. melts ice via (\ref{hi_eq}).
  180. \btbh
  181. \begin{tabular}{lccl}
  182. \hline
  183. Parameter & Symbol & Value & Reference \\
  184. \hline
  185. density of sea ice & $\rho_i$ & $\rm 920\, kg\, m^{-3}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  186. density of snow & $\rho_s$ & $\rm 330\, kg\, m^{-3}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  187. density of sea water$^a$ & $\rho_w$ & $\rm 1030\, kg\, m^{-3}$ & \\
  188. latent heat of fusion (ice) & $L_i$ & $\rm 3.28\times 10^{5}\, J\, kg^{-1}$ & \citp{Kiehl et al.}{1996, p. 139}\\
  189. latent heat of fusion (snow) & $L_{sn}$ & $\rm 3.32\times 10^{5}\, J\, kg^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  190. heat conductivity in ice & $\kappa_i$ & $\rm 2.03\, W\, m^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  191. heat conductivity in snow & $\kappa_s$ & $\rm 0.31\, W\, m^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  192. specific heat of sea ice & $c_{p_i}$ & $\rm 2070\, J\, kg^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  193. specific heat of snow & $c_{p_s}$ & $\rm 2090\, J\, kg^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  194. specific heat of sea water & $c_{p_w}$ & $\rm 4180\, J\, kg^{-1}\, K^{-1}$ & \\
  195. freezing point of seawater $^a$ & $T_f$ & $\rm 271.25\, K$ & \\
  196. ocean water salinity & $S_w$ & 34.7 psu & \\
  197. \hline
  198. \end{tabular}
  199. \caption[]{Thermodynamic parameter values.\\
  200. $^a$ at S=34.7
  201. }
  202. \label{iceparatab}
  203. \etb
  204. \nocite{apel1987}
  205. \nocite{kiehl1996}
  206. \nocite{king1997}