123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- \section{Pressure coordinate}
- The primitive equations in the $(\lambda , \mu, p)$ -coordinates
- without scaling. That means $D$ and $zeta$ in Appendix A and B have
- the units: $s^-1$, $T$ is in $K$, $p$ in $Pa$, $\phi$ in $m^2 s^{-2}$
- and $\vec{\nu}$ in $m s^{-1}$.\\
- Conservation of momentum (vorticity and divergence equation)
- \begin{equation}
- {\displaystyle \frac{\partial \zeta}{\partial t} = - \vec{\nu} \cdot \bigtriangledown (\zeta + f) - \omega \frac{\partial \zeta}{\partial p} - (\zeta + f) \bigtriangledown \cdot \vec{\nu} + \vec{k} \cdot (\frac{\partial \vec{\nu}}{\partial p} \times \bigtriangledown \omega) + P_\zeta}
- \end{equation}
- \begin{equation}
- {\displaystyle \frac{\partial D}{\partial t} = \vec{k} \cdot \bigtriangledown \times (\zeta + f) \vec{\nu} - \bigtriangledown \cdot (\omega \frac{\partial \vec{\nu}}{\partial p}) - \bigtriangledown^2 (\phi + \frac{\vec{\nu}^2}{2}) + P_D} \end{equation}
- Hydrostatic approximation (using the equation of state)
- \begin{equation}
- {\displaystyle \frac{\partial \phi}{\partial p} = - \frac{1}{\rho} = - \frac{RT}{p}}
- \end{equation}
- Conservation of mass (continuity equation)
- \begin{equation}
- {\displaystyle \bigtriangledown \cdot \vec{\nu} + \frac{ \partial \omega}{\partial p} = 0}
- \end{equation}
- Thermodynamic equation ( J= diabatic heating per unit mass)
- \begin{equation}
- {\displaystyle \frac{d T}{d t} = \frac{\omega}{c_p \rho} + \frac{J}{c_p} + P_T}
- \end{equation}
-
- \section{Sigma-system}
- $\sigma=p/p_s$ ranges monotonically from zero at
- the top of the atmosphere to unity at the ground. For $\xi=x,y $ or $t$
- \begin{equation}
- {\displaystyle (\frac{\partial }{\partial \xi})_p
- =\frac{\partial }{\partial \xi}
- -\sigma \frac{\partial \ln p_s}{\partial \xi}
- \frac{\partial }{\partial \sigma}}
- \end{equation}
- \begin{equation}
- \frac{\partial }{\partial p}
- =\frac{\partial \sigma }{\partial p}
- \frac{\partial }{\partial \sigma}
- =\frac{1 }{p_s}
- \frac{\partial }{\partial \sigma}
- \end{equation}
- The vertical velocity in the p-coordinate system $\omega$
- and in the new $\sigma$-coordinate
- system $\dot {\sigma}$
- are given by \cite{phillips1957}
- \begin{equation}
- \omega= \frac{p}{p_s}
- [\vec{V} \cdot \nabla p_s
- - \int\limits_{0}^{\sigma} \nabla \cdot p_s \vec{V} d \sigma]
- = p [\vec{V} \cdot \nabla \ln p_s]
- - p_s \int\limits_{0}^{\sigma} A d \sigma
- \end{equation}
- \begin{equation}
- \dot {\sigma}= \sigma \int\limits_{0}^{1} A d \sigma
- - \int\limits_{0}^{\sigma} A d \sigma
- \end{equation}
- with $A=D+\vec{V} \cdot \nabla \ln p_s
- = \frac{1}{p_s} \nabla \cdot p_s \vec{V}$.
- The primitive equations in the $(\lambda , \mu, \sigma)$ -coordinates
- without scaling
- Conservation of momentum (vorticity and divergence equation)
- \begin{equation}
- {\displaystyle \frac{\partial \zeta}{\partial t} = \frac{1}{a(1 - \mu^2)} \frac{\partial F_\nu}{\partial \lambda} - \frac{1}{a} \frac{\partial F_u}{\partial \mu} + P_\zeta}
- \end{equation}
- \begin{equation}
- {\displaystyle \frac{\partial D}{\partial t} = \frac{1}{a (1 - \mu^2)} \frac{\partial F_u}{\partial \lambda} + \frac{1}{a} \frac{ \partial F_\nu}{\partial \mu} - \bigtriangledown^2 (E + \phi +T_0 \ln p_s) + P_D}
- \end{equation}
- Hydrostatic approximation (using the equation of state)
- \begin{equation}
- {\displaystyle \frac{\partial \phi}{\partial \ln \sigma} = - TR}
- \end{equation}
- Conservation of mass (continuity equation)
- \begin{equation}
- {\displaystyle \frac{\partial \ln p_s}{\partial t} = - \frac{U}{a (1 - \mu^2)} \frac{\partial \ln p_s}{\partial \lambda} - \frac{V}{a} \frac{\partial \ln p_s}{\partial \mu} - D - \frac{\partial \dot{\sigma}}{\partial \sigma}
- = - \int\limits_{0}^{1} (D+\vec{V} \cdot \nabla \ln p_s) d \sigma}
- \end{equation}
- Thermodynamic equation ( J= diabatic heating per unit mass)
- \begin{equation}
- {\displaystyle \frac{\partial T}{\partial t} = F_T - \dot{\sigma} \frac{\partial T}{\partial \sigma} + \kappa T [\vec{V} \cdot \nabla \ln p_s - \frac{1}{\sigma}\int\limits_{0}^{\sigma} A d \sigma] +\frac{J}{c_p} + P_T}
- \end{equation}
- ${\displaystyle E = \frac{U^2 + V^2}{2(1 - \mu^2)} }$
- ${\displaystyle F_u = ( \zeta + f ) V - \dot{\sigma} \frac{\partial U}{\partial \sigma} - \frac{RT}{a} \frac{\partial \ln p_s}{\partial \lambda}} $
- ${\displaystyle F_\nu = - (\zeta + f)U - \dot{\sigma} \frac{\partial V}{\partial\sigma} - (1 - \mu^2) \frac{RT}{a} \frac{\partial \ln p_s}{\partial \mu}} $
- ${\displaystyle F_T = - \frac{U}{a(1-\mu^2)} \frac{\partial T}{\partial \lambda} - \frac{V}{a} \frac{\partial T}{\partial \mu} } $
- $A=D+\vec{V} \cdot \nabla \ln p_s
- = \frac{1}{p_s} \nabla \cdot p_s \vec{V}$.
- \section{Matrix {\em B}}
- For the implicit scheme, fast (linear) gravity modes and
- the slower non-linear terms are separated. \\
- ${\displaystyle\frac{ \partial D }{\partial t}=
- { N_D} - \bigtriangledown^2 (\phi + T_0 \ln p_s)} $\\
- ${\displaystyle \frac{\partial \ln p_s}{\partial t}
- = N_p - \int\limits_{0}^{1} D d \sigma}$\\
- ${\displaystyle \frac{\partial T'}{\partial t} = N_T- [ \sigma
- \int\limits_{0}^{1} D d \sigma - \int\limits_{0}^{\sigma} D d \sigma ]
- \frac{\partial T_0}{\partial \sigma} + \kappa T_0 [-
- \int\limits_{0}^{\sigma} D d \ln \sigma] }$\\
- ${\displaystyle \frac{\partial \phi}{\partial \ln \sigma} = - T} $\\
- The set of differential equations are approximated
- by its finite difference analogues using the
- notation (for each variable $D$, $T$, $\ln p_s$, and $\phi$)\\
- ${\displaystyle \overline{Q}^t = 0.5 (Q^{t + \Delta t} + Q^{t - \Delta t})
- =Q^{t - \Delta t} + \Delta t \delta_t Q} $
- and
- ${\displaystyle \delta_t Q = \frac{Q^{t + \Delta t} - Q^{t - \Delta t}}{2 \Delta t}}$\\
- The hydrostatic approximation using an angular momentum
- conserving finite-difference scheme
- is solved at half levels\\
- ${\displaystyle \phi_{r+0.5}-\phi_{r-0.5}=
- T_r \cdot \ln \frac{\sigma_{r+0.5}}{\sigma_{r-0.5}}}$\\
- Full level values of geopotential are given by\\
- ${\displaystyle \phi_{r}=\phi_{r+0.5}+\alpha_r
- T_r }$
- with
- ${\displaystyle \alpha_r=1-\frac{\sigma_{r-0.5}}{\Delta \sigma_r}
- \ln \frac{\sigma_{r+0.5}}{\sigma_{r-0.5}}}$
- and
- $ \Delta \sigma_r=\sigma_{r+0.5} - \sigma_{r-0.5}$\\
- Now, the implicit formulation for the divergence is derived
- using the conservation of mass, the hydrostatic approximation
- and the thermodynamic equation at discrete time steps\\
- ${\displaystyle \delta_t { D} = { N_D} - \bigtriangledown^2 (\overline{\phi}^t + T_0 [\ln p_s^{t - \Delta t} + \Delta t \delta_t \ln p_s])} $\\
- ${\displaystyle \delta_t \ln p_s = N_p - L_p [D^{t - \Delta t} + \Delta t \delta_t D]}$\\
- ${\displaystyle \overline{ \phi - \phi_s}^t = L_{\phi} [T^{t - \Delta t} + \Delta t \delta_t T}]$\\
- ${\displaystyle \delta_t T' = N_T - L_T [D^{t - \Delta t} + \Delta t \delta_t D]} $\\
- The set of differential equations
- for each level $ k (k=1,..,n)$ written in
- vector form leads to the matrix $ {\cal B}$ with n rows and
- n columns.
- The matrix $ {\cal B} = {\cal L}_{\phi} {\cal L}_T + \vec{T}_0 \vec{L}_p =
- {\cal B}(\sigma , \kappa , \vec{T}_0)$
- is constant in time.
- The variables ${\vec{D},\vec{T},\vec{T}',\vec{\phi}-\vec{\phi}_s}$
- $\vec{N}_D$ and $\vec{N}_T$ are represented by column vectors with values
- at each level. $L_p$, $L_T$ and $L_{\phi}$ contain the effect of the
- divergence (or the gravity waves) on
- the surface pressure tendency, the temperature tendency and the
- geopotential.\\
-
- $\vec{L}_p =(\Delta \sigma_1, ..., \Delta \sigma_n)$
- is a row vector with
- $ \Delta \sigma_n=\sigma_{n+0.5} - \sigma_{n-0.5}$.\\
- ${\cal L}_{\phi}=
- {\left(\begin{array}{*{5}{c}}
- 1 & \alpha_{21} &\alpha_{31}& \cdots & \alpha_{n1} \\
- 0 &\alpha_{22} &\alpha_{32}& \ddots & \vdots \\
- \vdots & \vdots & \vdots & \ddots & \vdots \\
- 0 & 0 & \cdots & 0 & \alpha_{nn} \\
- \end{array}
- \right)} $\\
- For $i=j: {\displaystyle \alpha_{jj}=1- [
- \frac{\sigma_{j-0.5}}{\sigma_{j+0.5}-\sigma_{j-0.5}}
- (\ln \sigma_{j+0.5} - \ln \sigma_{j-0.5})]}$\\
- $i>j: \alpha_{ij}=\ln \sigma_{j+0.5} - \ln \sigma_{j-0.5}$\\
- $i<j: \alpha_{ij}=0$.\\
- ${\cal L}_{T}
- = {\left(\begin{array}{*{4}{c}}
- \kappa (T_0)_1 \alpha_{11}&\kappa (T_0)_1 \alpha_{21}&\cdots&\kappa (T_0)_1 \alpha_{n1} \\
- \kappa (T_0)_2 \alpha_{12}&\kappa (T_0)_2 \alpha_{22}&\ddots& \vdots \\
- \vdots & \vdots & \ddots & \vdots \\
- \kappa (T_0)_n \alpha_{1n}&\kappa (T_0)_n \alpha_{2n}&\cdots&\kappa (T_0)_n \alpha_{nn} \\
- \end{array}
- \right)}
- + {\left(\begin{array}{*{5}{c}}
- \gamma_{11} &\gamma_{21}& \gamma_{31} & \cdots & \gamma_{n1} \\
- \gamma_{12} &\gamma_{22}& \gamma_{32} & \ddots & \vdots \\
- \vdots & \vdots & \vdots & \ddots & \vdots \\
- \gamma_{1n} & \gamma_{2n} & \cdots & \cdots & \gamma_{nn} \\
- \end{array}
- \right)} $\\
- $ \tau_{ij}=\kappa (T_0)_j \alpha_{ij}+\gamma_{ij}$
- with
- $ \Delta T_{n+0.5}=(T_0)_{n+1} - (T_0)_{n}$\\
- for $j=1$ and\\
- $i=j$: $ \gamma_{jj}= \frac{1}{2} [\Delta T_{0.5} (\sigma_{1}-1) ] $ \\
- $i>j$: $ \gamma_{ij}= \frac{1}{2} \Delta \sigma_{i} [ \Delta T_{0.5} \sigma_{1} ] $ \\
- for $j>1$ and\\
- $i=j$: $ \gamma_{jj}= \frac{1}{2} [\Delta T_{j-0.5} \sigma_{j-0.5}
- + \Delta T_{j+0.5} (\sigma_{j+0.5}-1) ] $ \\
- $i<j$: $ \gamma_{ij}= \frac{\Delta \sigma_{i} }{2 \Delta \sigma_{j} }
- [\Delta T_{j-0.5} (\sigma_{j-0.5}-1)
- + \Delta T_{j+0.5} (\sigma_{j+0.5}-1) ] $ \\
- $i>j$: $ \gamma_{ij}= \frac{\Delta \sigma_{i}}{2 \Delta \sigma_{j} }
- [\Delta T_{j-0.5} \sigma_{j-0.5}
- + \Delta T_{j+0.5} \sigma_{j+0.5} ] $ \\
- %%% Local Variables:
- %%% mode: latex
- %%% TeX-master: t
- %%% End:
|