ice.tex 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. \newtheorem{fig}{\vspace{-10pt} Figure}
  2. \newtheorem{tab}{\hspace{-5pt} Table}
  3. \def \dt{\Delta t}
  4. \def \dz{\Delta z}
  5. \def \eps{\varepsilon}
  6. \def \degrees{^\circ}
  7. \def \bc{\begin{center}}
  8. \def \ec{\end{center}}
  9. \def \be{\begin{equation}}
  10. \def \ee{\end{equation}}
  11. \def \ba{\begin{array}}
  12. \def \ea{\end{array}}
  13. \def \bt{\vspace{2mm} \begin{tabular}}
  14. \def \et{\end{tabular}}
  15. \def \bd{\begin{displaymath}}
  16. \def \ed{\end{displaymath}}
  17. \def \bi{\begin{itemize}}
  18. \def \ei{\end{itemize}}
  19. \def \ben{\begin{enumerate}}
  20. \def \een{\end{enumerate}}
  21. \def \bc{\begin{center}}
  22. \def \ec{\end{center}}
  23. \def \di{\displaystyle}
  24. \def \bgf{\begin{figure} \bc}
  25. \def \bgfh{\begin{figure}[h] \bc}
  26. \def \bgft{\begin{figure}[t] \bc}
  27. \def \bgfb{\begin{figure}[b] \bc}
  28. \def \bgfht{\begin{figure}[ht] \bc}
  29. \def \bgfhb{\begin{figure}[hb] \bc}
  30. \def \ef{\ec \end{figure}}
  31. \def \btb{\begin{table} \bc}
  32. \def \btbh{\begin{table}[h] \bc}
  33. \def \btbht{\begin{table}[ht] \bc}
  34. \def \etb{\ec \end{table}}
  35. \chapter{Model Description}
  36. The sea ice model is based on the zero layer model of
  37. \cite{semtner1976}. This model
  38. computes the thickness of the sea ice from the thermodynamic
  39. balances at the top and the bottom of the sea ice.
  40. The zero layer assumes the temperature gradient in the ice to
  41. be linear and eliminates the capacity of the ice to store heat.
  42. Nevertheless, it has been used successfully in areas where ice
  43. is mostly seasonal and thus relatively thin ($\rm <\, 1\, m$)
  44. \cite{beckmann2001}.
  45. Thus, the model is expected to perform better in the Southern
  46. Ocean than in the Arctic, where multiyear, thick ice dominates
  47. (cf. section 'Validation'). Sea ice is formed if the ocean
  48. temperature drops below the freezing point
  49. (271.25 K, cf. Eq. (\ref{tfeq})) and is melted whenever the
  50. ocean temperature increases above this point. The prognostic
  51. variables are the sea ice temperature $T_i\, \rm (K)$, the ice
  52. thickness $h_i \, \rm (m)$ and the ice concentration $A$, which
  53. in the present model is boolean: A given grid point is either
  54. ice free ($A=0$) or ice covered ($A=1$). The freezing
  55. temperature $T_f\, \rm(K)$ depends on salinity as
  56. \cite{unesco1978}
  57. \be
  58. T_f\, =\, 273.15\, -0.0575S_w\, +1.7105\times 10^{-3}S_w^{3/2}\, -2.155\times 10^{-4}S_w^2,
  59. \label{tfeq}
  60. \ee
  61. where $S_w\,\rm(psu)$ denotes the salinity of sea water.
  62. On the range $0 \,<\, S_w \,<\, 40$, the salinity
  63. - freezing point dependency reduces to a linear relationship
  64. where $T_f$ decreases with increasing salinity.
  65. Freezing and melting of sea ice releases just the right amount of latent heat
  66. of fusion to close the energy balance with respect to the total heat flux
  67. $Q \, \rm (W\, m^{-2})$ in the mixed layer \cite{parkinson1979}:
  68. \be
  69. Q\, +\rho_i\, L_i\, \frac{dh_i}{dt} =\, 0,
  70. \label{hieq}
  71. \ee
  72. where $\rho_i\, \rm (kg\, m^{-3})$ is the density of sea ice
  73. and $L_i\, \rm (W\, m^{-1}\, K^{-1})$ denotes the latent heat
  74. of fusion of sea ice. Standard parameter values are given in
  75. Table \ref{iceparatab}. \cite{parkinson1979} Thus, the prognostic
  76. equation for the sea ice thickness is given as
  77. \be
  78. {\di \frac{dh_i}{dt} = \frac{-Q}{\rho_i \, L_i}.}
  79. \label{hi_eq}
  80. \ee
  81. It is assumed that melting of sea ice takes place from above only, while
  82. freezing takes place at the lower side of the ice floe.
  83. \bgfht
  84. \def\epsfsize#1#2{0.5#1}
  85. \vspace{-3cm}
  86. \includegraphics[width=13cm]{heiko/modules_icemod_schema}
  87. %\centerline{\vbox{\epsfbox{heiko/modules_icemod_schema.ps}}}
  88. \vspace{-3cm}
  89. \caption{Schematic illustration of the temperature profile in the sea ice and
  90. the relevant heat fluxes. The atmospheric heat flux is the sum of sensible and
  91. latent heat flux ($Q_s,\,Q_l$), the incoming and reflected short wave
  92. radiation ($R_{s,\downarrow}\, R_{s,\uparrow}$) and the long wave radiation
  93. ($R_l$). Ice growth and melting processes are additionally influenced by the
  94. conductive heat flux $Q_c$ through the ice floe and the oceanic heat flux
  95. $Q_o$ resulting from the temperature difference between water and ice.
  96. The mixed layer depth $h_{ml}$ determines how much energy is available for ice
  97. formed from open water. The bottom temperature of the ice floe is set to the
  98. freezing temperature $T_f$. The sea ice surface temperature $T_s$ is
  99. calculated according to the energy balance at the surface.}
  100. \label{schemafig}
  101. \ef
  102. \section*{Basic equations}
  103. In the presence of sea ice, the heat fluxes are defined as follows.
  104. The total heat flux $Q\, \rm (W\, m^{-2})$ is given as
  105. \be
  106. Q \,=\, Q_a\, +Q_c\, +Q_o\, +\tilde{Q},
  107. \ee
  108. where $Q_a$ is the atmospheric heat flux,
  109. $Q_c$ is the conductive heat flux through the ice, $Q_o$ denotes the oceanic
  110. heat
  111. flux and $\tilde{Q}$ is the flux correction. The atmospheric heat flux
  112. \be
  113. Q_a = \left\{ \ba{lcr}
  114. \, F_T\, +L\, +R_{s,\downarrow}\, +R_{s,\uparrow}\,
  115. +R_{l,\downarrow}\, +R_{l,\uparrow}\, & {\rm if} & T_s > T_f, \\
  116. 0 & {\rm if} & T_s \le T_f.
  117. \ea \right. \label{qa_eq}
  118. \ee
  119. is the sum of sensible ($F_T$) and latent heat flux ($L$), the incoming and
  120. reflected short wave radiation ($R_{s,\downarrow}\, R_{s,\uparrow}$)
  121. and the long wave radiation ($R_l$). It is set to zero in the case of freezing,
  122. where the conductive heat flux applies (see below).
  123. The conductive heat flux through the ice
  124. \be
  125. Q_c = \left\{ \ba{lcr}
  126. 0 & {\rm if} & T_s > T_f, \\
  127. {\di \frac{\bar{\kappa}}{h_i\, +h_s}\, (T_s -T_f)} & {\rm if} & T_s \le T_f.
  128. \ea \right. \label{qc_eq}
  129. \ee
  130. is set to zero in the case of melting ice, as the ice melts at the top. If the
  131. ice is freezing, the atmospheric heat flux determines the surface temperature
  132. $T_s$ and has to pass through the ice. Whatever energy is left at the
  133. bottom of the ice sheet is then available for freezing.
  134. $\bar{\kappa}\, \rm (W\, m^{-1}\, K^{-1})$ is the mean conductivity
  135. of the sea ice floe and snow cover, computed as
  136. \be
  137. {\di \bar{\kappa}\, =\, \frac{\kappa_i h_i\, +\kappa_s h_s}{h_i\, +h_s}}.
  138. \ee
  139. The oceanic heat flux is considered only in the presence of sea ice:
  140. \be
  141. Q_o\, =\, c_o\, (T_d\, -T_f).
  142. \label{qoce} \ee
  143. It is determined by the gradient between the temperature of sea water in the
  144. deep
  145. ocean ($T_d,\, \rm (K)$) and the surface temperature, which is the
  146. freezing temperature ($T_f,\, \rm (K)$). In the absence of sea ice, the oceanic
  147. heat flux is implicitly considered as it determines the sea water temperature
  148. in the mixed layer ($T_s,\, \rm (K)$).
  149. The flux correction is calculated as
  150. \be
  151. {\di \tilde{Q}\, =\, \frac{\rho_i\, L_i}{\eps_c}\, (h_i\, -h_{i,c}),}
  152. \ee
  153. where $h_{i,c}\, \rm (m)$ is the climatological ice thickness and $\eps_c$ is a
  154. relaxation constant. For example, $\eps\, =\, 2000$ corrects the ice thickness
  155. to climatological values in 2000 time steps.
  156. In the case of melting ice, the ice thickness may become negative if the
  157. energy available for melting is greater than needed to
  158. melt the present ice. Then, the surplus energy is heating the
  159. sea water, setting the surface temperature to
  160. \be
  161. {\di T_s\, =\, T_f\, -\frac{\rho_i\, L_i\, h_i}{\rho_w\, c_{p_s}\, h_{mix}} },
  162. \ee
  163. with $h_i < 0$.
  164. \section*{Ice formation from open water}
  165. If the surface temperature of open ocean water is below the freezing point,
  166. sea ice is formed. The heat flux available for freezing is given as
  167. \be
  168. Q_f\, =\, {\di \frac{\rho_w\, c_{p_w}\, h_{ml}}{dt} \, (T_s\, -T_f)\,
  169. +Q_{next},}
  170. \ee
  171. where $\rho_w\, \rm(kg\, m^{-3})$ is the density of sea water,
  172. $c_{p_w}\, \rm(W\, s\, kg^{-1}\, K^{-1})$ is the specific heat of sea water and
  173. $h_{ml}\, \rm(m)$ denotes the mixed layer depth. The thickness of the new
  174. formed
  175. ice sheet is calculated by setting $Q\, =\, Q_f\, +\tilde{Q}$
  176. in (\ref{hieq}). We have prescribed a
  177. minimum ice thickness $h_{i,min}\, =\, 0.1\, \rm m$, since the presence of sea
  178. ice drastically changes the albedo. Open ocean has an albedo of 0.1, whereas
  179. sea
  180. ice yields an albedo of 0.7. As the model differentiates only between no ice
  181. and
  182. full ice in one gridpoint, the albedo would change unrealistically early in
  183. the case
  184. of ice formation without the prescribed minimum thickness. If less than 10 cm
  185. ice
  186. is formed in one time step, the flux to form this amount of ice is taken to the
  187. next time step.Thus,
  188. \be
  189. Q_{next} = \left\{ \ba{rcl}
  190. 0 & {\rm if} & h_i \ge 0.1, \\
  191. Q_f & {\rm if} & h_i < 0.1.
  192. \ea \right.
  193. \ee
  194. If, for example, 4 cm ice is formed per time step and conditions
  195. do not change, it takes three time steps until the grid point is classified as
  196. ice covered.
  197. \section*{Sea ice temperature}
  198. The sea ice temperature $T_i\,\rm (K)$ is calculated from the energy balance
  199. at the ice surface:
  200. \be
  201. {\di (\rho_i\, c_{p_i}\, h_{min}\, +\rho_s\, c_{p_s}\, h_s)
  202. \frac{dT_i}{dt}\, -Q_b\, =\, 0\,\, \Rightarrow \,\,
  203. \frac{dT_i}{dt}\, =\,
  204. \frac{Q_b}{\rho_i\, c_{p_i}\, h_{min}\, +\rho_s\, c_{p_s}\, h_s},}
  205. \label{ti_eq}
  206. \ee
  207. where $Q_b\, =\, Q_a\, +Q_c$ with $Q_a$ as defined in (\ref{qa_eq}) and
  208. \be
  209. Q_c\, =\, {\di \frac{\bar{\kappa}}{h_i\,+h_s}\, (T_f\, -T_s)}
  210. \ee
  211. $c_{p_i},c_{p_s}\, \rm (J\, kg^{-1}\, K^{-1})$ are the specific heat of sea ice
  212. and snow, respectively. $h_s\, \rm (m)$ denotes the snow depth. As far as the ice
  213. is concerned, only the upper 10 cm ($h_{min}\,\rm(m)$) are taken
  214. into account here, otherwise, the surface temperature would be
  215. overestimated. To ease notation, we define
  216. \be \Theta \,=\, \rho_i\, c_{p_i}\, h_{min}\, +\rho_s\, c_{p_s}\, h_s. \ee
  217. The change of heat flux with respect to temperature can be linearized:
  218. \be \ba{rcl}
  219. {\di \frac{dQ_b}{dT_i}} &=& {\di
  220. \frac{Q_b^{(n+1)}-Q_b^{(n)}}{T_i^{(n+1)}-T_i^{(n)}}\,
  221. +{\cal O}(T_i^2)}, \medskip \\
  222. \Rightarrow Q_b^{(n+1)} &=& {\di Q_b^{(n)}\, +\frac{dQ_b}{dT_i}\,
  223. (T_i^{(n+1)}-T_i^{(n)}).}
  224. \ea \label{qb_eq}
  225. \ee
  226. As in the present model the heat fluxes are assumed to be linear functions
  227. of temperature, the derivative $\frac{dQ_b}{dT_i}$ is a constant.
  228. For example, $\frac{dQ_c}{dT_i}\,=\,\frac{\kappa_i}{h_i}$.
  229. Eq. (\ref{ti_eq}) is discretized, using (\ref{qb_eq}), as
  230. \be \ba{rcl}
  231. T_i^{(n+1)}\, -T_i^{(n)} &=& {\di \frac{\Delta t}{\Theta}\,
  232. \left(Q_b^{(n)}\, +\frac{dQ_b}{dT_i}\, (T_i^{(n+1)}-T_i^{(n)}) \right) }
  233. \medskip \\
  234. {\di \Rightarrow T_i^{(n+1)}\, \left(\frac{\Theta}{\Delta t}\,
  235. -\frac{dQ_b}{dT_i} \right)} &=&
  236. {\di \left( \frac{\Theta}{\Delta t}\,
  237. -\frac{dQ_b}{dT_i} \right)}\,T_i^{(n)}\,+ Q_b^{(n)}
  238. \ea \ee
  239. where $T_i^{(n)}$ and $T_i^{(n+1)}$ denote the old and new sea ice temperature,
  240. respectively. Thus, the new surface temperature is given as
  241. \be
  242. {\di T_i^{(n+1)} \,=\, T_i^{(n)}\,
  243. +\frac{Q_b^{(n)}}{\frac{\Theta}{\Delta t}\, -\frac{dQ_b}{dT_i}}.}
  244. \ee
  245. \section*{Snow cover}
  246. In a second step, the sea ice model is equipped with a snow cover.
  247. This changes the albedo properties, as snow has a slightly higher
  248. albedo ($\approx 0.8$) than ice. Also, the conductive heat flux
  249. through the ice is changed. The heat conductivity of snow is
  250. approximately 7-fold smaller than that of sea ice (cf. Table \ref{iceparatab}).
  251. Eq. (\ref{qc_eq}) is changed to
  252. \be
  253. Q_c\, =\, \left\{ \ba{lcr}
  254. 0 & {\rm if} & T_s > T_f, \\
  255. {\di \frac{\bar{\kappa}}{h_i\, +h_s}\, (T_s -T_f),}
  256. \ea \right. \label{qc_eq2}
  257. \ee
  258. where $\kappa_s\, \rm (W\, m^{-1}\, K^{-1})$ is the heat conductivity of snow
  259. and $h_s\, \rm(m)$ is the thickness of snow cover. If the surface temperature
  260. is above freezing, then first the snow is melted, then the ice. Snow melts
  261. according to
  262. \be
  263. {\di \frac{dh_s}{dt}\, =\, \frac{Q_a}{\rho_s\,L_{sn}},}
  264. \ee
  265. where $\rho_s\, \rm (kg\, m^{-3})$ is the density of snow and
  266. $L_{sn}\,\rm (W\, s\, kg^{-1})$ is the latent heat of fusion of snow.
  267. If the atmospheric
  268. heat flux is so large that it melts all the snow, then the remaining energy
  269. melts ice via (\ref{hi_eq}). The source
  270. of snow is precipitation minus evaporation $P-E\, \rm (mm\, m^{-1}\, d^{-1})$
  271. from PUMA, which, whenever the surface temperature drops below $0^\circ C$, is
  272. considered to be snow:
  273. \be
  274. {\di \frac{dh_s}{dt}}\, =\, \left\{ \ba{lcr}
  275. 0 & {\rm if} & T_s \ge 0^\circ C, \medskip \\
  276. {\di \frac{\rho_w}{\rho_s} (P -E)} & {\rm if} & T_s < 0^\circ C, \\
  277. \ea \right.
  278. \ee
  279. \btbh
  280. \begin{tabular}{lccl}
  281. \hline
  282. Parameter & Symbol & Value & Reference \\
  283. \hline
  284. density of sea ice & $\rho_i$ & $\rm 920\, kg\, m^{-3}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  285. density of snow & $\rho_s$ & $\rm 330\, kg\, m^{-3}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  286. density of sea water$^a$ & $\rho_w$ & $\rm 1030\, kg\, m^{-3}$ & \\
  287. latent heat of fusion (ice) & $L_i$ & $\rm 3.28\times 10^{5}\, J\, kg^{-1}$ & \citp{Kiehl et al.}{1996, p. 139}\\
  288. latent heat of fusion (snow) & $L_{sn}$ & $\rm 3.32\times 10^{5}\, J\, kg^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  289. heat conductivity in ice & $\kappa_i$ & $\rm 2.03\, W\, m^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  290. heat conductivity in snow & $\kappa_s$ & $\rm 0.31\, W\, m^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  291. specific heat of sea ice & $c_{p_i}$ & $\rm 2070\, J\, kg^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  292. specific heat of snow & $c_{p_s}$ & $\rm 2090\, J\, kg^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
  293. specific heat of sea water & $c_{p_w}$ & $\rm 4180\, J\, kg^{-1}\, K^{-1}$ & \\
  294. ocean flux advection coefficient& $c_o$ & $\rm 4\,(0.2)\,W\, m^{-2}\, K^{-1}\,^b$& \\
  295. freezing point of seawater $^a$ & $T_f$ & $\rm 271.25\, K$ & \\
  296. ocean water salinity & $S_w$ & 34.7 psu & \\
  297. emissivity of sea ice surface & $\varepsilon$ & 0.945 & \citp{King and Turner}{1997, p. 70} \\
  298. emissivity of snow surface & $\varepsilon$ & 0.975 & \citp{King and Turner}{1997, p. 70} \\
  299. \hline
  300. \end{tabular}
  301. \caption[]{Thermodynamic parameter values.\\
  302. $^a$ at S=34.7\\
  303. $^b$ Southern Ocean value 20 times larger than Arctic Ocean value.}
  304. \label{iceparatab}
  305. \etb
  306. \nocite{apel1987}
  307. \nocite{kiehl1996}
  308. \nocite{king1997}
  309. \clearpage
  310. \section*{Maximal ice floe thickness}
  311. In this subsection, the maximal sea ice floe thickness is calculated. It is
  312. not desirable
  313. that the ice grows infinitely. Actually, this does not happen, as the
  314. conductive heat
  315. flux through the ice is decreased with increasing ice thickness and thus
  316. balances the
  317. oceanic heat flux at some maximal thickness of the ice floe. It follows from
  318. Eq. (\ref{hi_eq}) that the maximal ice thickness, $h_{i,max}$, is reached when
  319. \be
  320. h_i = h_{i,max} \, \iff \, Q_c + Q_o = 0,
  321. \label{hibedingung} \ee
  322. thus, (using Eq. (\ref{qoce}) and Eq. (\ref{qc_eq2}))
  323. \be
  324. h_{i,max} = {\di \frac{-(T_s -T_f) \kappa_i +c_o(T_d-T_f) h_s
  325. \kappa_i/\kappa_s}{c_o(T_d-T_f)},}
  326. \label{himax} \ee
  327. Fig.\ \ref{maxthckfig} shows the maximal sea ice thickness dependent on the
  328. surface temperature and the snow cover. The deep sea temperature is set to
  329. $\rm T_d\,=\,2^\circ C$. For this calculation, the value of $c_o\,=\,4\,W\,
  330. m^{-2}\, K^{-1}$ is used.
  331. Higher values of $c_o$ lead to reduced maximal ice floe thicknesses.
  332. The presence of snow reduces the maximal sea ice thickness
  333. due to the significantly lower heat conductivity in snow compared to ice
  334. (cf. Table \ref{iceparatab}. As can be seen in Fig.\ \ref{maxthckfig}, snow cover
  335. can even lead to negative sea ice thickness values. For example,
  336. at $\rm T_s\,=\,-10^\circ C$ and $\rm h_s\,=\,0.3\, m$, Eq. (\ref{hibedingung})
  337. balances at $\rm h_{i,max}\,=\,-1\, m$. In this case, all ice under the snow
  338. cover will melt
  339. away. This effect is due to the crude parameterization of the oceanic heat
  340. flux.
  341. \bgfht
  342. \includegraphics[width=13cm]{heiko/modules_icemod_maxthck}
  343. %\def\epsfsize#1#2{0.8#1}
  344. %\centerline{\vbox{\epsfbox{heiko/modules_icemod_maxthck.ps}}}
  345. \caption[]{Maximal ice floe thickness at a deep sea temperature of $\rm
  346. 2^\circ C$.}
  347. \label{maxthckfig}
  348. \ef
  349. \clearpage
  350. \section*{Ocean heat flux parameterizations}
  351. \label{qoc_obs}
  352. Various parameterizations of the oceanic heat flux $Q_{oc}$ have been
  353. proposed. \cit{Hewitt et al.}{2000}, who use the parameterization proposed by
  354. \cit{Gordon et al.}{2000}, state that they adjust the sea surface temperature
  355. (SST) such that the oceanic heat flux yields reasonable sea ice concentrations
  356. and thicknesses. \nocite{hewitt2000} An overview is given in Table
  357. \ref{flxoctab}. The parameterizations are illustrated in Fig.\ \ref{flxocfig}.
  358. In this work,the coefficient $c_o\, = \rm 0.2\, W\, m^{-2}\, K^{-1}$
  359. parameterizes the advective oceanic heat transport such that the model
  360. yields realistic oceanic heat fluxes of $\rm 2\, W\, m^{-2}$ in
  361. the central arctic and $\rm 10-20\, W\, m^{-2}$ on the latitude of
  362. Spitzbergen \ct{Hibler and Zhang}{1993}. \nocite{hibler1993}
  363. \btbh
  364. \begin{tabular}{lccl}
  365. \hline
  366. Reference & Heat flux ($\rm W\, m^{-2}$) & Parameter values & Model type \\
  367. \hline
  368. this work$^a$ & $\rm c\, (T_d\, -T_f)$ & $\rm c\,=\,4 (0.4)
  369. \,W\,m^{-2}\,K^{-1}$ & TD \\
  370. \citp{Cattle and Crossley}{1995}& $\rm \rho_w\, c_{p,w}\, \gamma\, (SST\,
  371. -T_f)\, /0.5\Delta z_1$ & $\rm \gamma\,=\,2.5\times 10^{-3}\,m^2\,s^{-1}$ & TD
  372. \\
  373. \citp{Birnbaum}{1998} & $\rm \rho_w\, c_{p,w}\, \gamma\, u_\ast\,
  374. (SST\, -T_f)$ & $\rm \gamma\,=\,6\times 10^{-3}$ & D-TD \\
  375. \citp{Lohmann et al.}{1998} & $\rm c\, (SST\, -T_f)$ & $\rm
  376. c\,=\,200\,W\,m^{-2}\,K^{-1}$ & TD \\
  377. \citp{Gordon et al.}{2000} & $\rm c\, (SST\, -T_f)$ & $\rm
  378. c\,=\,20\,W\,m^{-2}\,K^{-1}$ & TD \\
  379. \citp{Timmermann}{2000} & $\rm \rho_w\, c_{p,w}\, \gamma\, u_\ast\,
  380. (SST\, -T_f)$ & $\rm \gamma\,=\,1.2\times 10^{-2}$ & D-TD \\
  381. \citp{Timmermann}{2000}(b) & $\rm \rho_w\, c_{p,w}\, \gamma\, (SST\,
  382. -T_f)$ & $\rm \gamma\,=\,10^{-4}\, m\, s^{-1}$ & D-TD \\
  383. \hline
  384. \end{tabular}
  385. \caption[]{Parameterizations of the oceanic heat flux. $\rm T_d,SST$ and $\rm
  386. T_f$ denote the deep ocean, sea surface and freezing temperature,
  387. respectively. $\rm \Delta z_1$ denotes the thickness of the uppermost ocean
  388. box. The considered models are either thermodynamic models (TD) or
  389. dynamic-thermodynamic models (D-TD). The relative velocity between sea ice
  390. drift and ocean current is denoted by $u_\ast$.
  391. $^a$ value for the southern (northern) polar area.}
  392. \label{flxoctab}
  393. \etb
  394. \nocite{cattle1995} \nocite{gordon2000} \nocite{timmermann2000} \nocite{lohmann1998}
  395. \nocite{birnbaum1998}
  396. \begin{figure}[ht]
  397. \includegraphics[width=13cm]{heiko/modules_icemod_flxoc}
  398. \caption[]{Parameterizations of the oceanic heat flux. Solid (top):
  399. \cit{Gordon et al.}{2000}; Solid (bottom): this work (Southern Ocean value).
  400. Plusses: \cit{Lohmann et al.}{1998}. Circles: \cit{Birnbaum}{1998} with
  401. $\rm u_\ast=8.3\times 10^{-3}$, following \cit{Timmermann}{2000}. Diamonds:
  402. \cit{Cattle and Crossley}{1995} with $\rm \Delta z_1=50\, m$, which then
  403. yields results equivalent to \citp{Timmermann}{2000}(b).}
  404. \label{flxocfig}
  405. \end{figure}
  406. \clearpage
  407. \section*{Output}
  408. Submodule-specific output is written to tape whenever the namelist
  409. parameter {\em NOUTPUT} is set to 1. An overview of output fields is
  410. given in Table \ref{ice_output}. The scalar values are written in the
  411. diagnostic routine, i.e. every {\em NDIAG} time steps (default value every
  412. 5 days). The global fields are written every {\em NOUT} time steps (default
  413. value every 2 days).
  414. \btbh
  415. \begin{center}
  416. \begin{tabular}{llr}
  417. \hline
  418. Output field & Description & Code \\
  419. \hline
  420. \multicolumn{3}{c}{\em Scalar values written to fort.76 resp. icecover.srv} \\
  421. xarc & Ice cover Arctic Ocean & 951 \\
  422. xant & Ice cover Southern Ocean & 952 \\
  423. xarcd & Mean ice thickness Arctic Ocean & 953 \\
  424. xantd & Mean ice thickness Southern Ocean & 954 \\
  425. xarcsnd & Mean snow depth Arctic Ocean & 955 \\
  426. xantsnd & Mean snow depth Southern Ocean & 956 \\
  427. xarcmf & Melt/freeze flux Arctic Ocean & 961 \\
  428. xantmf & Melt/freeze flux Southern Ocean & 962 \\
  429. xarcd.clim & Climatological mean ice thickness Arctic Ocean & 963 \\
  430. xantd.clim & Climatological mean ice thickness Southern Ocean & 964 \\
  431. \hline
  432. \multicolumn{3}{c}{\em Global fields written to fort.75 resp. icedata.srv} \\
  433. xicec & Ice concentration & 210 \\
  434. xiced & Ice thickness & 211 \\
  435. xsnow & Snow depth & 141 \\
  436. xcliced2& Climatological ice thickness & 911 \\
  437. xcmf & Cumulative melt/freeze flux & 801 \\
  438. xheat & Heat flux received from atmosphere & 701 \\
  439. xqoc & Heat flux received from deep ocean & 702 \\
  440. xcflux & Conductive heat flux passed to ocean & 703 \\
  441. xfluxrs & Ice growth flux saved for next time step & 704 \\
  442. fxice2 & Flux correction ice thickness & 705 \\
  443. xlst & Land / Sea mask time dependent $^a$ & 972 \\
  444. \hline
  445. \end{tabular}
  446. \end{center}
  447. \label{ice_output}
  448. \caption{Sea ice model output. $^a$ The land sea mask has to be written for
  449. every time step to avoid GRADS problems, as all other variables in
  450. $icedata.srv$ are time-dependent.}
  451. \etb
  452. \btbh
  453. \begin{center}
  454. \begin{tabular}{llr}
  455. \hline
  456. Output field & Description & Code \\
  457. \hline
  458. ytoc & SST & 851 \\
  459. yhmix & MLD & 853 \\
  460. yclim2 & Climatological SST & 721 \\
  461. ycdpt2 & Climatological MLD & 722 \\
  462. yfsst2 & Flux correction SST & 711 \\
  463. yfdpt2 & Flux correction MLD & 712 \\
  464. ytbottom & Deep ocean temperature & 852 \\
  465. yqoc & Heat flux from deep ocean & 702 \\
  466. \hline
  467. \end{tabular}
  468. \end{center}
  469. \label{ocean_output}
  470. \caption{Mixed layer model output written to fort.31 resp. oceandata.srv.}
  471. \etb