123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510 |
- \newtheorem{fig}{\vspace{-10pt} Figure}
- \newtheorem{tab}{\hspace{-5pt} Table}
- \def \dt{\Delta t}
- \def \dz{\Delta z}
- \def \eps{\varepsilon}
- \def \degrees{^\circ}
- \def \bc{\begin{center}}
- \def \ec{\end{center}}
- \def \be{\begin{equation}}
- \def \ee{\end{equation}}
- \def \ba{\begin{array}}
- \def \ea{\end{array}}
- \def \bt{\vspace{2mm} \begin{tabular}}
- \def \et{\end{tabular}}
- \def \bd{\begin{displaymath}}
- \def \ed{\end{displaymath}}
- \def \bi{\begin{itemize}}
- \def \ei{\end{itemize}}
- \def \ben{\begin{enumerate}}
- \def \een{\end{enumerate}}
- \def \bc{\begin{center}}
- \def \ec{\end{center}}
- \def \di{\displaystyle}
- \def \bgf{\begin{figure} \bc}
- \def \bgfh{\begin{figure}[h] \bc}
- \def \bgft{\begin{figure}[t] \bc}
- \def \bgfb{\begin{figure}[b] \bc}
- \def \bgfht{\begin{figure}[ht] \bc}
- \def \bgfhb{\begin{figure}[hb] \bc}
- \def \ef{\ec \end{figure}}
- \def \btb{\begin{table} \bc}
- \def \btbh{\begin{table}[h] \bc}
- \def \btbht{\begin{table}[ht] \bc}
- \def \etb{\ec \end{table}}
- \chapter{Model Description}
- The sea ice model is based on the zero layer model of
- \cite{semtner1976}. This model
- computes the thickness of the sea ice from the thermodynamic
- balances at the top and the bottom of the sea ice.
- The zero layer assumes the temperature gradient in the ice to
- be linear and eliminates the capacity of the ice to store heat.
- Nevertheless, it has been used successfully in areas where ice
- is mostly seasonal and thus relatively thin ($\rm <\, 1\, m$)
- \cite{beckmann2001}.
- Thus, the model is expected to perform better in the Southern
- Ocean than in the Arctic, where multiyear, thick ice dominates
- (cf. section 'Validation'). Sea ice is formed if the ocean
- temperature drops below the freezing point
- (271.25 K, cf. Eq. (\ref{tfeq})) and is melted whenever the
- ocean temperature increases above this point. The prognostic
- variables are the sea ice temperature $T_i\, \rm (K)$, the ice
- thickness $h_i \, \rm (m)$ and the ice concentration $A$, which
- in the present model is boolean: A given grid point is either
- ice free ($A=0$) or ice covered ($A=1$). The freezing
- temperature $T_f\, \rm(K)$ depends on salinity as
- \cite{unesco1978}
- \be
- T_f\, =\, 273.15\, -0.0575S_w\, +1.7105\times 10^{-3}S_w^{3/2}\, -2.155\times 10^{-4}S_w^2,
- \label{tfeq}
- \ee
- where $S_w\,\rm(psu)$ denotes the salinity of sea water.
- On the range $0 \,<\, S_w \,<\, 40$, the salinity
- - freezing point dependency reduces to a linear relationship
- where $T_f$ decreases with increasing salinity.
- Freezing and melting of sea ice releases just the right amount of latent heat
- of fusion to close the energy balance with respect to the total heat flux
- $Q \, \rm (W\, m^{-2})$ in the mixed layer \cite{parkinson1979}:
- \be
- Q\, +\rho_i\, L_i\, \frac{dh_i}{dt} =\, 0,
- \label{hieq}
- \ee
- where $\rho_i\, \rm (kg\, m^{-3})$ is the density of sea ice
- and $L_i\, \rm (W\, m^{-1}\, K^{-1})$ denotes the latent heat
- of fusion of sea ice. Standard parameter values are given in
- Table \ref{iceparatab}. \cite{parkinson1979} Thus, the prognostic
- equation for the sea ice thickness is given as
- \be
- {\di \frac{dh_i}{dt} = \frac{-Q}{\rho_i \, L_i}.}
- \label{hi_eq}
- \ee
- It is assumed that melting of sea ice takes place from above only, while
- freezing takes place at the lower side of the ice floe.
- \bgfht
- \def\epsfsize#1#2{0.5#1}
- \vspace{-3cm}
- \includegraphics[width=13cm]{heiko/modules_icemod_schema}
- %\centerline{\vbox{\epsfbox{heiko/modules_icemod_schema.ps}}}
- \vspace{-3cm}
- \caption{Schematic illustration of the temperature profile in the sea ice and
- the relevant heat fluxes. The atmospheric heat flux is the sum of sensible and
- latent heat flux ($Q_s,\,Q_l$), the incoming and reflected short wave
- radiation ($R_{s,\downarrow}\, R_{s,\uparrow}$) and the long wave radiation
- ($R_l$). Ice growth and melting processes are additionally influenced by the
- conductive heat flux $Q_c$ through the ice floe and the oceanic heat flux
- $Q_o$ resulting from the temperature difference between water and ice.
- The mixed layer depth $h_{ml}$ determines how much energy is available for ice
- formed from open water. The bottom temperature of the ice floe is set to the
- freezing temperature $T_f$. The sea ice surface temperature $T_s$ is
- calculated according to the energy balance at the surface.}
- \label{schemafig}
- \ef
- \section*{Basic equations}
- In the presence of sea ice, the heat fluxes are defined as follows.
- The total heat flux $Q\, \rm (W\, m^{-2})$ is given as
- \be
- Q \,=\, Q_a\, +Q_c\, +Q_o\, +\tilde{Q},
- \ee
- where $Q_a$ is the atmospheric heat flux,
- $Q_c$ is the conductive heat flux through the ice, $Q_o$ denotes the oceanic
- heat
- flux and $\tilde{Q}$ is the flux correction. The atmospheric heat flux
- \be
- Q_a = \left\{ \ba{lcr}
- \, F_T\, +L\, +R_{s,\downarrow}\, +R_{s,\uparrow}\,
- +R_{l,\downarrow}\, +R_{l,\uparrow}\, & {\rm if} & T_s > T_f, \\
- 0 & {\rm if} & T_s \le T_f.
- \ea \right. \label{qa_eq}
- \ee
- is the sum of sensible ($F_T$) and latent heat flux ($L$), the incoming and
- reflected short wave radiation ($R_{s,\downarrow}\, R_{s,\uparrow}$)
- and the long wave radiation ($R_l$). It is set to zero in the case of freezing,
- where the conductive heat flux applies (see below).
- The conductive heat flux through the ice
- \be
- Q_c = \left\{ \ba{lcr}
- 0 & {\rm if} & T_s > T_f, \\
- {\di \frac{\bar{\kappa}}{h_i\, +h_s}\, (T_s -T_f)} & {\rm if} & T_s \le T_f.
- \ea \right. \label{qc_eq}
- \ee
- is set to zero in the case of melting ice, as the ice melts at the top. If the
- ice is freezing, the atmospheric heat flux determines the surface temperature
- $T_s$ and has to pass through the ice. Whatever energy is left at the
- bottom of the ice sheet is then available for freezing.
- $\bar{\kappa}\, \rm (W\, m^{-1}\, K^{-1})$ is the mean conductivity
- of the sea ice floe and snow cover, computed as
- \be
- {\di \bar{\kappa}\, =\, \frac{\kappa_i h_i\, +\kappa_s h_s}{h_i\, +h_s}}.
- \ee
- The oceanic heat flux is considered only in the presence of sea ice:
- \be
- Q_o\, =\, c_o\, (T_d\, -T_f).
- \label{qoce} \ee
- It is determined by the gradient between the temperature of sea water in the
- deep
- ocean ($T_d,\, \rm (K)$) and the surface temperature, which is the
- freezing temperature ($T_f,\, \rm (K)$). In the absence of sea ice, the oceanic
- heat flux is implicitly considered as it determines the sea water temperature
- in the mixed layer ($T_s,\, \rm (K)$).
- The flux correction is calculated as
- \be
- {\di \tilde{Q}\, =\, \frac{\rho_i\, L_i}{\eps_c}\, (h_i\, -h_{i,c}),}
- \ee
- where $h_{i,c}\, \rm (m)$ is the climatological ice thickness and $\eps_c$ is a
- relaxation constant. For example, $\eps\, =\, 2000$ corrects the ice thickness
- to climatological values in 2000 time steps.
- In the case of melting ice, the ice thickness may become negative if the
- energy available for melting is greater than needed to
- melt the present ice. Then, the surplus energy is heating the
- sea water, setting the surface temperature to
- \be
- {\di T_s\, =\, T_f\, -\frac{\rho_i\, L_i\, h_i}{\rho_w\, c_{p_s}\, h_{mix}} },
- \ee
- with $h_i < 0$.
- \section*{Ice formation from open water}
- If the surface temperature of open ocean water is below the freezing point,
- sea ice is formed. The heat flux available for freezing is given as
- \be
- Q_f\, =\, {\di \frac{\rho_w\, c_{p_w}\, h_{ml}}{dt} \, (T_s\, -T_f)\,
- +Q_{next},}
- \ee
- where $\rho_w\, \rm(kg\, m^{-3})$ is the density of sea water,
- $c_{p_w}\, \rm(W\, s\, kg^{-1}\, K^{-1})$ is the specific heat of sea water and
- $h_{ml}\, \rm(m)$ denotes the mixed layer depth. The thickness of the new
- formed
- ice sheet is calculated by setting $Q\, =\, Q_f\, +\tilde{Q}$
- in (\ref{hieq}). We have prescribed a
- minimum ice thickness $h_{i,min}\, =\, 0.1\, \rm m$, since the presence of sea
- ice drastically changes the albedo. Open ocean has an albedo of 0.1, whereas
- sea
- ice yields an albedo of 0.7. As the model differentiates only between no ice
- and
- full ice in one gridpoint, the albedo would change unrealistically early in
- the case
- of ice formation without the prescribed minimum thickness. If less than 10 cm
- ice
- is formed in one time step, the flux to form this amount of ice is taken to the
- next time step.Thus,
- \be
- Q_{next} = \left\{ \ba{rcl}
- 0 & {\rm if} & h_i \ge 0.1, \\
- Q_f & {\rm if} & h_i < 0.1.
- \ea \right.
- \ee
- If, for example, 4 cm ice is formed per time step and conditions
- do not change, it takes three time steps until the grid point is classified as
- ice covered.
- \section*{Sea ice temperature}
- The sea ice temperature $T_i\,\rm (K)$ is calculated from the energy balance
- at the ice surface:
- \be
- {\di (\rho_i\, c_{p_i}\, h_{min}\, +\rho_s\, c_{p_s}\, h_s)
- \frac{dT_i}{dt}\, -Q_b\, =\, 0\,\, \Rightarrow \,\,
- \frac{dT_i}{dt}\, =\,
- \frac{Q_b}{\rho_i\, c_{p_i}\, h_{min}\, +\rho_s\, c_{p_s}\, h_s},}
- \label{ti_eq}
- \ee
- where $Q_b\, =\, Q_a\, +Q_c$ with $Q_a$ as defined in (\ref{qa_eq}) and
- \be
- Q_c\, =\, {\di \frac{\bar{\kappa}}{h_i\,+h_s}\, (T_f\, -T_s)}
- \ee
- $c_{p_i},c_{p_s}\, \rm (J\, kg^{-1}\, K^{-1})$ are the specific heat of sea ice
- and snow, respectively. $h_s\, \rm (m)$ denotes the snow depth. As far as the ice
- is concerned, only the upper 10 cm ($h_{min}\,\rm(m)$) are taken
- into account here, otherwise, the surface temperature would be
- overestimated. To ease notation, we define
- \be \Theta \,=\, \rho_i\, c_{p_i}\, h_{min}\, +\rho_s\, c_{p_s}\, h_s. \ee
- The change of heat flux with respect to temperature can be linearized:
- \be \ba{rcl}
- {\di \frac{dQ_b}{dT_i}} &=& {\di
- \frac{Q_b^{(n+1)}-Q_b^{(n)}}{T_i^{(n+1)}-T_i^{(n)}}\,
- +{\cal O}(T_i^2)}, \medskip \\
- \Rightarrow Q_b^{(n+1)} &=& {\di Q_b^{(n)}\, +\frac{dQ_b}{dT_i}\,
- (T_i^{(n+1)}-T_i^{(n)}).}
- \ea \label{qb_eq}
- \ee
- As in the present model the heat fluxes are assumed to be linear functions
- of temperature, the derivative $\frac{dQ_b}{dT_i}$ is a constant.
- For example, $\frac{dQ_c}{dT_i}\,=\,\frac{\kappa_i}{h_i}$.
- Eq. (\ref{ti_eq}) is discretized, using (\ref{qb_eq}), as
- \be \ba{rcl}
- T_i^{(n+1)}\, -T_i^{(n)} &=& {\di \frac{\Delta t}{\Theta}\,
- \left(Q_b^{(n)}\, +\frac{dQ_b}{dT_i}\, (T_i^{(n+1)}-T_i^{(n)}) \right) }
- \medskip \\
- {\di \Rightarrow T_i^{(n+1)}\, \left(\frac{\Theta}{\Delta t}\,
- -\frac{dQ_b}{dT_i} \right)} &=&
- {\di \left( \frac{\Theta}{\Delta t}\,
- -\frac{dQ_b}{dT_i} \right)}\,T_i^{(n)}\,+ Q_b^{(n)}
- \ea \ee
- where $T_i^{(n)}$ and $T_i^{(n+1)}$ denote the old and new sea ice temperature,
- respectively. Thus, the new surface temperature is given as
- \be
- {\di T_i^{(n+1)} \,=\, T_i^{(n)}\,
- +\frac{Q_b^{(n)}}{\frac{\Theta}{\Delta t}\, -\frac{dQ_b}{dT_i}}.}
- \ee
- \section*{Snow cover}
- In a second step, the sea ice model is equipped with a snow cover.
- This changes the albedo properties, as snow has a slightly higher
- albedo ($\approx 0.8$) than ice. Also, the conductive heat flux
- through the ice is changed. The heat conductivity of snow is
- approximately 7-fold smaller than that of sea ice (cf. Table \ref{iceparatab}).
- Eq. (\ref{qc_eq}) is changed to
- \be
- Q_c\, =\, \left\{ \ba{lcr}
- 0 & {\rm if} & T_s > T_f, \\
- {\di \frac{\bar{\kappa}}{h_i\, +h_s}\, (T_s -T_f),}
- \ea \right. \label{qc_eq2}
- \ee
- where $\kappa_s\, \rm (W\, m^{-1}\, K^{-1})$ is the heat conductivity of snow
- and $h_s\, \rm(m)$ is the thickness of snow cover. If the surface temperature
- is above freezing, then first the snow is melted, then the ice. Snow melts
- according to
- \be
- {\di \frac{dh_s}{dt}\, =\, \frac{Q_a}{\rho_s\,L_{sn}},}
- \ee
- where $\rho_s\, \rm (kg\, m^{-3})$ is the density of snow and
- $L_{sn}\,\rm (W\, s\, kg^{-1})$ is the latent heat of fusion of snow.
- If the atmospheric
- heat flux is so large that it melts all the snow, then the remaining energy
- melts ice via (\ref{hi_eq}). The source
- of snow is precipitation minus evaporation $P-E\, \rm (mm\, m^{-1}\, d^{-1})$
- from PUMA, which, whenever the surface temperature drops below $0^\circ C$, is
- considered to be snow:
- \be
- {\di \frac{dh_s}{dt}}\, =\, \left\{ \ba{lcr}
- 0 & {\rm if} & T_s \ge 0^\circ C, \medskip \\
- {\di \frac{\rho_w}{\rho_s} (P -E)} & {\rm if} & T_s < 0^\circ C, \\
- \ea \right.
- \ee
- \btbh
- \begin{tabular}{lccl}
- \hline
- Parameter & Symbol & Value & Reference \\
- \hline
- density of sea ice & $\rho_i$ & $\rm 920\, kg\, m^{-3}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- density of snow & $\rho_s$ & $\rm 330\, kg\, m^{-3}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- density of sea water$^a$ & $\rho_w$ & $\rm 1030\, kg\, m^{-3}$ & \\
- latent heat of fusion (ice) & $L_i$ & $\rm 3.28\times 10^{5}\, J\, kg^{-1}$ & \citp{Kiehl et al.}{1996, p. 139}\\
- latent heat of fusion (snow) & $L_{sn}$ & $\rm 3.32\times 10^{5}\, J\, kg^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- heat conductivity in ice & $\kappa_i$ & $\rm 2.03\, W\, m^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- heat conductivity in snow & $\kappa_s$ & $\rm 0.31\, W\, m^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- specific heat of sea ice & $c_{p_i}$ & $\rm 2070\, J\, kg^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- specific heat of snow & $c_{p_s}$ & $\rm 2090\, J\, kg^{-1}\, K^{-1}$ & \citp{Kiehl et al.}{1996, p. 139} \\
- specific heat of sea water & $c_{p_w}$ & $\rm 4180\, J\, kg^{-1}\, K^{-1}$ & \\
- ocean flux advection coefficient& $c_o$ & $\rm 4\,(0.2)\,W\, m^{-2}\, K^{-1}\,^b$& \\
- freezing point of seawater $^a$ & $T_f$ & $\rm 271.25\, K$ & \\
- ocean water salinity & $S_w$ & 34.7 psu & \\
- emissivity of sea ice surface & $\varepsilon$ & 0.945 & \citp{King and Turner}{1997, p. 70} \\
- emissivity of snow surface & $\varepsilon$ & 0.975 & \citp{King and Turner}{1997, p. 70} \\
- \hline
- \end{tabular}
- \caption[]{Thermodynamic parameter values.\\
- $^a$ at S=34.7\\
- $^b$ Southern Ocean value 20 times larger than Arctic Ocean value.}
- \label{iceparatab}
- \etb
- \nocite{apel1987}
- \nocite{kiehl1996}
- \nocite{king1997}
- \clearpage
- \section*{Maximal ice floe thickness}
- In this subsection, the maximal sea ice floe thickness is calculated. It is
- not desirable
- that the ice grows infinitely. Actually, this does not happen, as the
- conductive heat
- flux through the ice is decreased with increasing ice thickness and thus
- balances the
- oceanic heat flux at some maximal thickness of the ice floe. It follows from
- Eq. (\ref{hi_eq}) that the maximal ice thickness, $h_{i,max}$, is reached when
- \be
- h_i = h_{i,max} \, \iff \, Q_c + Q_o = 0,
- \label{hibedingung} \ee
- thus, (using Eq. (\ref{qoce}) and Eq. (\ref{qc_eq2}))
- \be
- h_{i,max} = {\di \frac{-(T_s -T_f) \kappa_i +c_o(T_d-T_f) h_s
- \kappa_i/\kappa_s}{c_o(T_d-T_f)},}
- \label{himax} \ee
- Fig.\ \ref{maxthckfig} shows the maximal sea ice thickness dependent on the
- surface temperature and the snow cover. The deep sea temperature is set to
- $\rm T_d\,=\,2^\circ C$. For this calculation, the value of $c_o\,=\,4\,W\,
- m^{-2}\, K^{-1}$ is used.
- Higher values of $c_o$ lead to reduced maximal ice floe thicknesses.
- The presence of snow reduces the maximal sea ice thickness
- due to the significantly lower heat conductivity in snow compared to ice
- (cf. Table \ref{iceparatab}. As can be seen in Fig.\ \ref{maxthckfig}, snow cover
- can even lead to negative sea ice thickness values. For example,
- at $\rm T_s\,=\,-10^\circ C$ and $\rm h_s\,=\,0.3\, m$, Eq. (\ref{hibedingung})
- balances at $\rm h_{i,max}\,=\,-1\, m$. In this case, all ice under the snow
- cover will melt
- away. This effect is due to the crude parameterization of the oceanic heat
- flux.
- \bgfht
- \includegraphics[width=13cm]{heiko/modules_icemod_maxthck}
- %\def\epsfsize#1#2{0.8#1}
- %\centerline{\vbox{\epsfbox{heiko/modules_icemod_maxthck.ps}}}
- \caption[]{Maximal ice floe thickness at a deep sea temperature of $\rm
- 2^\circ C$.}
- \label{maxthckfig}
- \ef
- \clearpage
- \section*{Ocean heat flux parameterizations}
- \label{qoc_obs}
- Various parameterizations of the oceanic heat flux $Q_{oc}$ have been
- proposed. \cit{Hewitt et al.}{2000}, who use the parameterization proposed by
- \cit{Gordon et al.}{2000}, state that they adjust the sea surface temperature
- (SST) such that the oceanic heat flux yields reasonable sea ice concentrations
- and thicknesses. \nocite{hewitt2000} An overview is given in Table
- \ref{flxoctab}. The parameterizations are illustrated in Fig.\ \ref{flxocfig}.
- In this work,the coefficient $c_o\, = \rm 0.2\, W\, m^{-2}\, K^{-1}$
- parameterizes the advective oceanic heat transport such that the model
- yields realistic oceanic heat fluxes of $\rm 2\, W\, m^{-2}$ in
- the central arctic and $\rm 10-20\, W\, m^{-2}$ on the latitude of
- Spitzbergen \ct{Hibler and Zhang}{1993}. \nocite{hibler1993}
-
- \btbh
- \begin{tabular}{lccl}
- \hline
- Reference & Heat flux ($\rm W\, m^{-2}$) & Parameter values & Model type \\
- \hline
- this work$^a$ & $\rm c\, (T_d\, -T_f)$ & $\rm c\,=\,4 (0.4)
- \,W\,m^{-2}\,K^{-1}$ & TD \\
- \citp{Cattle and Crossley}{1995}& $\rm \rho_w\, c_{p,w}\, \gamma\, (SST\,
- -T_f)\, /0.5\Delta z_1$ & $\rm \gamma\,=\,2.5\times 10^{-3}\,m^2\,s^{-1}$ & TD
- \\
- \citp{Birnbaum}{1998} & $\rm \rho_w\, c_{p,w}\, \gamma\, u_\ast\,
- (SST\, -T_f)$ & $\rm \gamma\,=\,6\times 10^{-3}$ & D-TD \\
- \citp{Lohmann et al.}{1998} & $\rm c\, (SST\, -T_f)$ & $\rm
- c\,=\,200\,W\,m^{-2}\,K^{-1}$ & TD \\
- \citp{Gordon et al.}{2000} & $\rm c\, (SST\, -T_f)$ & $\rm
- c\,=\,20\,W\,m^{-2}\,K^{-1}$ & TD \\
- \citp{Timmermann}{2000} & $\rm \rho_w\, c_{p,w}\, \gamma\, u_\ast\,
- (SST\, -T_f)$ & $\rm \gamma\,=\,1.2\times 10^{-2}$ & D-TD \\
- \citp{Timmermann}{2000}(b) & $\rm \rho_w\, c_{p,w}\, \gamma\, (SST\,
- -T_f)$ & $\rm \gamma\,=\,10^{-4}\, m\, s^{-1}$ & D-TD \\
- \hline
- \end{tabular}
- \caption[]{Parameterizations of the oceanic heat flux. $\rm T_d,SST$ and $\rm
- T_f$ denote the deep ocean, sea surface and freezing temperature,
- respectively. $\rm \Delta z_1$ denotes the thickness of the uppermost ocean
- box. The considered models are either thermodynamic models (TD) or
- dynamic-thermodynamic models (D-TD). The relative velocity between sea ice
- drift and ocean current is denoted by $u_\ast$.
- $^a$ value for the southern (northern) polar area.}
- \label{flxoctab}
- \etb
- \nocite{cattle1995} \nocite{gordon2000} \nocite{timmermann2000} \nocite{lohmann1998}
- \nocite{birnbaum1998}
- \begin{figure}[ht]
- \includegraphics[width=13cm]{heiko/modules_icemod_flxoc}
- \caption[]{Parameterizations of the oceanic heat flux. Solid (top):
- \cit{Gordon et al.}{2000}; Solid (bottom): this work (Southern Ocean value).
- Plusses: \cit{Lohmann et al.}{1998}. Circles: \cit{Birnbaum}{1998} with
- $\rm u_\ast=8.3\times 10^{-3}$, following \cit{Timmermann}{2000}. Diamonds:
- \cit{Cattle and Crossley}{1995} with $\rm \Delta z_1=50\, m$, which then
- yields results equivalent to \citp{Timmermann}{2000}(b).}
- \label{flxocfig}
- \end{figure}
- \clearpage
- \section*{Output}
- Submodule-specific output is written to tape whenever the namelist
- parameter {\em NOUTPUT} is set to 1. An overview of output fields is
- given in Table \ref{ice_output}. The scalar values are written in the
- diagnostic routine, i.e. every {\em NDIAG} time steps (default value every
- 5 days). The global fields are written every {\em NOUT} time steps (default
- value every 2 days).
- \btbh
- \begin{center}
- \begin{tabular}{llr}
- \hline
- Output field & Description & Code \\
- \hline
- \multicolumn{3}{c}{\em Scalar values written to fort.76 resp. icecover.srv} \\
- xarc & Ice cover Arctic Ocean & 951 \\
- xant & Ice cover Southern Ocean & 952 \\
- xarcd & Mean ice thickness Arctic Ocean & 953 \\
- xantd & Mean ice thickness Southern Ocean & 954 \\
- xarcsnd & Mean snow depth Arctic Ocean & 955 \\
- xantsnd & Mean snow depth Southern Ocean & 956 \\
- xarcmf & Melt/freeze flux Arctic Ocean & 961 \\
- xantmf & Melt/freeze flux Southern Ocean & 962 \\
- xarcd.clim & Climatological mean ice thickness Arctic Ocean & 963 \\
- xantd.clim & Climatological mean ice thickness Southern Ocean & 964 \\
- \hline
- \multicolumn{3}{c}{\em Global fields written to fort.75 resp. icedata.srv} \\
- xicec & Ice concentration & 210 \\
- xiced & Ice thickness & 211 \\
- xsnow & Snow depth & 141 \\
- xcliced2& Climatological ice thickness & 911 \\
- xcmf & Cumulative melt/freeze flux & 801 \\
- xheat & Heat flux received from atmosphere & 701 \\
- xqoc & Heat flux received from deep ocean & 702 \\
- xcflux & Conductive heat flux passed to ocean & 703 \\
- xfluxrs & Ice growth flux saved for next time step & 704 \\
- fxice2 & Flux correction ice thickness & 705 \\
- xlst & Land / Sea mask time dependent $^a$ & 972 \\
- \hline
- \end{tabular}
- \end{center}
- \label{ice_output}
- \caption{Sea ice model output. $^a$ The land sea mask has to be written for
- every time step to avoid GRADS problems, as all other variables in
- $icedata.srv$ are time-dependent.}
- \etb
- \btbh
- \begin{center}
- \begin{tabular}{llr}
- \hline
- Output field & Description & Code \\
- \hline
- ytoc & SST & 851 \\
- yhmix & MLD & 853 \\
- yclim2 & Climatological SST & 721 \\
- ycdpt2 & Climatological MLD & 722 \\
- yfsst2 & Flux correction SST & 711 \\
- yfdpt2 & Flux correction MLD & 712 \\
- ytbottom & Deep ocean temperature & 852 \\
- yqoc & Heat flux from deep ocean & 702 \\
- \hline
- \end{tabular}
- \end{center}
- \label{ocean_output}
- \caption{Mixed layer model output written to fort.31 resp. oceandata.srv.}
- \etb
|