1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120 |
- MODULE sbcblk_clio
- !!======================================================================
- !! *** MODULE sbcblk_clio ***
- !! Ocean forcing: bulk thermohaline forcing of the ocean (or ice)
- !!=====================================================================
- !! History : OPA ! 1997-06 (Louvain-La-Neuve) Original code
- !! ! 2001-04 (C. Ethe) add flx_blk_declin
- !! NEMO 2.0 ! 2002-08 (C. Ethe, G. Madec) F90: Free form and module
- !! 3.0 ! 2008-03 (C. Talandier, G. Madec) surface module + LIM3
- !! 3.2 ! 2009-04 (B. Lemaire) Introduce iom_put
- !!----------------------------------------------------------------------
- !!----------------------------------------------------------------------
- !! sbc_blk_clio : CLIO bulk formulation: read and update required input fields
- !! blk_clio_oce : ocean CLIO bulk formulea: compute momentum, heat and freswater fluxes for the ocean
- !! blk_ice_clio : ice CLIO bulk formulea: compute momentum, heat and freswater fluxes for the sea-ice
- !! blk_clio_qsr_oce : shortwave radiation for ocean computed from the cloud cover
- !! blk_clio_qsr_ice : shortwave radiation for ice computed from the cloud cover
- !! flx_blk_declin : solar declination
- !!----------------------------------------------------------------------
- USE oce ! ocean dynamics and tracers
- USE dom_oce ! ocean space and time domain
- USE phycst ! physical constants
- USE fldread ! read input fields
- USE sbc_oce ! Surface boundary condition: ocean fields
- USE iom ! I/O manager library
- USE in_out_manager ! I/O manager
- USE lib_mpp ! distribued memory computing library
- USE wrk_nemo ! work arrays
- USE timing ! Timing
- USE lbclnk ! ocean lateral boundary conditions (or mpp link)
- USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
- USE albedo
- USE prtctl ! Print control
- #if defined key_lim3
- USE ice
- USE sbc_ice ! Surface boundary condition: ice fields
- USE limthd_dh ! for CALL lim_thd_snwblow
- #elif defined key_lim2
- USE ice_2
- USE sbc_ice ! Surface boundary condition: ice fields
- USE par_ice_2 ! Surface boundary condition: ice fields
- #endif
- IMPLICIT NONE
- PRIVATE
- PUBLIC sbc_blk_clio ! routine called by sbcmod.F90
- #if defined key_lim2 || defined key_lim3
- PUBLIC blk_ice_clio_tau ! routine called by sbcice_lim.F90
- PUBLIC blk_ice_clio_flx ! routine called by sbcice_lim.F90
- #endif
- INTEGER , PARAMETER :: jpfld = 7 ! maximum number of files to read
- INTEGER , PARAMETER :: jp_utau = 1 ! index of wind stress (i-component) (N/m2) at U-point
- INTEGER , PARAMETER :: jp_vtau = 2 ! index of wind stress (j-component) (N/m2) at V-point
- INTEGER , PARAMETER :: jp_wndm = 3 ! index of 10m wind module (m/s) at T-point
- INTEGER , PARAMETER :: jp_humi = 4 ! index of specific humidity ( % )
- INTEGER , PARAMETER :: jp_ccov = 5 ! index of cloud cover ( % )
- INTEGER , PARAMETER :: jp_tair = 6 ! index of 10m air temperature (Kelvin)
- INTEGER , PARAMETER :: jp_prec = 7 ! index of total precipitation (rain+snow) (Kg/m2/s)
- TYPE(FLD),ALLOCATABLE,DIMENSION(:) :: sf ! structure of input fields (file informations, fields read)
- INTEGER, PARAMETER :: jpintsr = 24 ! number of time step between sunrise and sunset
- ! ! uses for heat flux computation
- LOGICAL :: lbulk_init = .TRUE. ! flag, bulk initialization done or not)
- REAL(wp) :: cai = 1.40e-3 ! best estimate of atm drag in order to get correct FS export in ORCA2-LIM
- REAL(wp) :: cao = 1.00e-3 ! chosen by default ==> should depends on many things... !!gmto be updated
- REAL(wp) :: rdtbs2 !:
-
- REAL(wp), DIMENSION(19) :: budyko ! BUDYKO's coefficient (cloudiness effect on LW radiation)
- DATA budyko / 1.00, 0.98, 0.95, 0.92, 0.89, 0.86, 0.83, 0.80, 0.78, 0.75, &
- & 0.72, 0.69, 0.67, 0.64, 0.61, 0.58, 0.56, 0.53, 0.50 /
- REAL(wp), DIMENSION(20) :: tauco ! cloud optical depth coefficient
- DATA tauco / 6.6, 6.6, 7.0, 7.2, 7.1, 6.8, 6.5, 6.6, 7.1, 7.6, &
- & 6.6, 6.1, 5.6, 5.5, 5.8, 5.8, 5.6, 5.6, 5.6, 5.6 /
- !!
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sbudyko ! cloudiness effect on LW radiation
- REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: stauc ! cloud optical depth
-
- REAL(wp) :: eps20 = 1.e-20 ! constant values
-
- !! * Substitutions
- # include "vectopt_loop_substitute.h90"
- !!----------------------------------------------------------------------
- !! NEMO/OPA 4.0 , NEMO Consortium (2011)
- !! $Id: sbcblk_clio.F90 6399 2016-03-22 17:17:23Z clem $
- !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt)
- !!----------------------------------------------------------------------
- CONTAINS
- SUBROUTINE sbc_blk_clio( kt )
- !!---------------------------------------------------------------------
- !! *** ROUTINE sbc_blk_clio ***
- !!
- !! ** Purpose : provide at each time step the surface ocean fluxes
- !! (momentum, heat, freshwater and runoff)
- !!
- !! ** Method : (1) READ each fluxes in NetCDF files:
- !! the i-component of the stress (N/m2)
- !! the j-component of the stress (N/m2)
- !! the 10m wind speed module (m/s)
- !! the 10m air temperature (Kelvin)
- !! the 10m specific humidity (%)
- !! the cloud cover (%)
- !! the total precipitation (rain+snow) (Kg/m2/s)
- !! (2) CALL blk_oce_clio
- !!
- !! C A U T I O N : never mask the surface stress fields
- !! the stress is assumed to be in the (i,j) mesh referential
- !!
- !! ** Action : defined at each time-step at the air-sea interface
- !! - utau, vtau i- and j-component of the wind stress
- !! - taum wind stress module at T-point
- !! - wndm 10m wind module at T-point over free ocean or leads in presence of sea-ice
- !! - qns non-solar heat flux including latent heat of solid
- !! precip. melting and emp heat content
- !! - qsr solar heat flux
- !! - emp upward mass flux (evap. - precip)
- !! - sfx salt flux; set to zero at nit000 but possibly non-zero
- !! if ice is present (computed in limsbc(_2).F90)
- !!----------------------------------------------------------------------
- INTEGER, INTENT( in ) :: kt ! ocean time step
- !!
- INTEGER :: ifpr, jfpr ! dummy indices
- INTEGER :: ierr0, ierr1, ierr2, ierr3 ! return error code
- INTEGER :: ios ! Local integer output status for namelist read
- !!
- CHARACTER(len=100) :: cn_dir ! Root directory for location of CLIO files
- TYPE(FLD_N), DIMENSION(jpfld) :: slf_i ! array of namelist informations on the fields to read
- TYPE(FLD_N) :: sn_utau, sn_vtau, sn_wndm, sn_tair ! informations about the fields to be read
- TYPE(FLD_N) :: sn_humi, sn_ccov, sn_prec ! " "
- !!
- NAMELIST/namsbc_clio/ cn_dir, sn_utau, sn_vtau, sn_wndm, sn_humi, &
- & sn_ccov, sn_tair, sn_prec
- !!---------------------------------------------------------------------
- ! ! ====================== !
- IF( kt == nit000 ) THEN ! First call kt=nit000 !
- ! ! ====================== !
- REWIND( numnam_ref ) ! Namelist namsbc_clio in reference namelist : CLIO files
- READ ( numnam_ref, namsbc_clio, IOSTAT = ios, ERR = 901)
- 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_clio in reference namelist', lwp )
- REWIND( numnam_cfg ) ! Namelist namsbc_clio in configuration namelist : CLIO files
- READ ( numnam_cfg, namsbc_clio, IOSTAT = ios, ERR = 902 )
- 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namsbc_clio in configuration namelist', lwp )
- IF(lwm) WRITE ( numond, namsbc_clio )
- ! store namelist information in an array
- slf_i(jp_utau) = sn_utau ; slf_i(jp_vtau) = sn_vtau ; slf_i(jp_wndm) = sn_wndm
- slf_i(jp_tair) = sn_tair ; slf_i(jp_humi) = sn_humi
- slf_i(jp_ccov) = sn_ccov ; slf_i(jp_prec) = sn_prec
-
- ! set sf structure
- ALLOCATE( sf(jpfld), STAT=ierr0 )
- IF( ierr0 > 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_clio: unable to allocate sf structure' )
- DO ifpr= 1, jpfld
- ALLOCATE( sf(ifpr)%fnow(jpi,jpj,1) , STAT=ierr1)
- IF( slf_i(ifpr)%ln_tint ) ALLOCATE( sf(ifpr)%fdta(jpi,jpj,1,2) , STAT=ierr2 )
- END DO
- IF( ierr1+ierr2 > 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_clio: unable to allocate sf array structure' )
- ! fill sf with slf_i and control print
- CALL fld_fill( sf, slf_i, cn_dir, 'sbc_blk_clio', 'flux formulation for ocean surface boundary condition', 'namsbc_clio' )
-
- ! allocate sbcblk clio arrays
- ALLOCATE( sbudyko(jpi,jpj) , stauc(jpi,jpj), STAT=ierr3 )
- IF( ierr3 > 0 ) CALL ctl_stop( 'STOP', 'sbc_blk_clio: unable to allocate arrays' )
- !
- sfx(:,:) = 0._wp ! salt flux; zero unless ice is present (computed in limsbc(_2).F90)
- !
- ENDIF
- ! ! ====================== !
- ! ! At each time-step !
- ! ! ====================== !
- !
- CALL fld_read( kt, nn_fsbc, sf ) ! input fields provided at the current time-step
- !
- IF( MOD( kt - 1, nn_fsbc ) == 0 ) CALL blk_oce_clio( sf, sst_m )
- !
- END SUBROUTINE sbc_blk_clio
- SUBROUTINE blk_oce_clio( sf, pst )
- !!---------------------------------------------------------------------------
- !! *** ROUTINE blk_oce_clio ***
- !!
- !! ** Purpose : Compute momentum, heat and freshwater fluxes at ocean surface
- !! using CLIO bulk formulea
- !!
- !! ** Method : The flux of heat at the ocean surfaces are derived
- !! from semi-empirical ( or bulk ) formulae which relate the flux to
- !! the properties of the surface and of the lower atmosphere. Here, we
- !! follow the work of Oberhuber, 1988
- !! - momentum flux (stresses) directly read in files at U- and V-points
- !! - compute ocean/ice albedos (call albedo_oce/albedo_ice)
- !! - compute shortwave radiation for ocean (call blk_clio_qsr_oce)
- !! - compute long-wave radiation for the ocean
- !! - compute the turbulent heat fluxes over the ocean
- !! - deduce the evaporation over the ocean
- !! ** Action : Fluxes over the ocean:
- !! - utau, vtau i- and j-component of the wind stress
- !! - taum wind stress module at T-point
- !! - wndm 10m wind module at T-point over free ocean or leads in presence of sea-ice
- !! - qns non-solar heat flux including latent heat of solid
- !! precip. melting and emp heat content
- !! - qsr solar heat flux
- !! - emp suface mass flux (evap.-precip.)
- !! ** Nota : sf has to be a dummy argument for AGRIF on NEC
- !!----------------------------------------------------------------------
- TYPE(fld), INTENT(in), DIMENSION(:) :: sf ! input data
- REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pst ! surface temperature [Celcius]
- !!
- INTEGER :: ji, jj ! dummy loop indices
- !!
- REAL(wp) :: zrhova, zcsho, zcleo, zcldeff ! temporary scalars
- REAL(wp) :: zqsato, zdteta, zdeltaq, ztvmoy, zobouks ! - -
- REAL(wp) :: zpsims, zpsihs, zpsils, zobouku, zxins, zpsimu ! - -
- REAL(wp) :: zpsihu, zpsilu, zstab,zpsim, zpsih, zpsil ! - -
- REAL(wp) :: zvatmg, zcmn, zchn, zcln, zcmcmn, zdenum ! - -
- REAL(wp) :: zdtetar, ztvmoyr, zlxins, zchcm, zclcm ! - -
- REAL(wp) :: zmt1, zmt2, zmt3, ztatm3, ztamr, ztaevbk ! - -
- REAL(wp) :: zsst, ztatm, zcco1, zpatm, zcmax, zrmax ! - -
- REAL(wp) :: zrhoa, zev, zes, zeso, zqatm, zevsqr ! - -
- REAL(wp) :: ztx2, zty2, zcevap, zcprec ! - -
- REAL(wp) :: ztau1 ! TECLIM change
- REAL(wp), DIMENSION(jpi,jpj) :: ztau2 ! TECLIM change
- REAL(wp), POINTER, DIMENSION(:,:) :: zqlw ! long-wave heat flux over ocean
- REAL(wp), POINTER, DIMENSION(:,:) :: zqla ! latent heat flux over ocean
- REAL(wp), POINTER, DIMENSION(:,:) :: zqsb ! sensible heat flux over ocean
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('blk_oce_clio')
- !
- CALL wrk_alloc( jpi,jpj, zqlw, zqla, zqsb )
- zpatm = 101000._wp ! atmospheric pressure (assumed constant here)
- !------------------------------------!
- ! momentum fluxes (utau, vtau ) !
- !------------------------------------!
- !CDIR COLLAPSE
- utau(:,:) = sf(jp_utau)%fnow(:,:,1)
- !CDIR COLLAPSE
- vtau(:,:) = sf(jp_vtau)%fnow(:,:,1)
- ! begin TECLIM change
- CALL lbc_lnk( utau, 'U', -1. )
- CALL lbc_lnk( vtau, 'V', -1. )
- ! In the way we use CLIO forcings in TECLIM, utau and vtau are not the
- ! wind stress components as they should be, but the wind components. In
- ! this case (corresponding to sf(jp_utau)%clvar == 'uwnd') a special
- ! treatement is needed in the next section (ie a change from wind speed
- ! to wind stress over the ocean). This is inspired by what is done in the
- ! subroutine lim_sbc_tau in limsbc.F90.
- !
- ! Notes : * 1.3 = air density
- ! * cao is used
- !------------------------------------!
- ! wind stress module (taum ) !
- !------------------------------------!
- IF( sf(jp_utau)%clvar == 'uwnd' ) THEN
- !CDIR NOVERRCHK
- DO jj = 2, jpjm1
- !CDIR NOVERRCHK
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ztx2 = utau(ji-1,jj ) + utau(ji,jj)
- zty2 = vtau(ji ,jj-1) + vtau(ji,jj)
- ztau1 = 0.25 * ( ztx2 * ztx2 + zty2 * zty2 )
- taum(ji,jj) = 1.3 * cao * ztau1
- ztau2(ji,jj) = 1.3 * cao * SQRT ( ztau1 )
- END DO
- END DO
- taum(:,:) = taum(:,:) * tmask(:,:,1)
- CALL lbc_lnk( taum, 'T', 1. )
- CALL lbc_lnk( ztau2, 'T', 1. )
- !CDIR NOVERRCHK
- DO jj = 2, jpjm1
- !CDIR NOVERRCHK
- DO ji = fs_2, fs_jpim1 ! vector opt.
- utau(ji,jj) = 0.5 * ( ztau2(ji,jj) + ztau2(ji+1,jj) ) * utau(ji,jj)
- vtau(ji,jj) = 0.5 * ( ztau2(ji,jj) + ztau2(ji,jj+1) ) * vtau(ji,jj)
- END DO
- END DO
- utau(:,:) = utau(:,:) * umask(:,:,1)
- vtau(:,:) = vtau(:,:) * vmask(:,:,1)
- CALL lbc_lnk( utau, 'U', -1. )
- CALL lbc_lnk( vtau, 'V', -1. )
- ELSE
- !CDIR NOVERRCHK
- DO jj = 2, jpjm1
- !CDIR NOVERRCHK
- DO ji = fs_2, fs_jpim1 ! vector opt.
- ztx2 = utau(ji-1,jj ) + utau(ji,jj)
- zty2 = vtau(ji ,jj-1) + vtau(ji,jj)
- taum(ji,jj) = 0.5 * SQRT( ztx2 * ztx2 + zty2 * zty2 )
- END DO
- END DO
- utau(:,:) = utau(:,:) * umask(:,:,1)
- vtau(:,:) = vtau(:,:) * vmask(:,:,1)
- taum(:,:) = taum(:,:) * tmask(:,:,1)
- CALL lbc_lnk( taum, 'T', 1. )
- ENDIF
- ! end TECLIM change
- !------------------------------------!
- ! store the wind speed (wndm ) !
- !------------------------------------!
- !CDIR COLLAPSE
- wndm(:,:) = sf(jp_wndm)%fnow(:,:,1)
- wndm(:,:) = wndm(:,:) * tmask(:,:,1)
- !------------------------------------------------!
- ! Shortwave radiation for ocean and snow/ice !
- !------------------------------------------------!
-
- CALL blk_clio_qsr_oce( qsr )
- qsr(:,:) = qsr(:,:) * tmask(:,:,1) ! no shortwave radiation into the ocean beneath ice shelf
- !------------------------!
- ! Other ocean fluxes !
- !------------------------!
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- !
- zsst = pst(ji,jj) + rt0 ! converte Celcius to Kelvin the SST
- ztatm = sf(jp_tair)%fnow(ji,jj,1) ! and set minimum value far above 0 K (=rt0 over land)
- zcco1 = 1.0 - sf(jp_ccov)%fnow(ji,jj,1) ! fraction of clear sky ( 1 - cloud cover)
- zrhoa = zpatm / ( 287.04 * ztatm ) ! air density (equation of state for dry air)
- ztamr = ztatm - rtt ! Saturation water vapour
- zmt1 = SIGN( 17.269, ztamr ) ! ||
- zmt2 = SIGN( 21.875, ztamr ) ! \ /
- zmt3 = SIGN( 28.200, -ztamr ) ! \/
- zes = 611.0 * EXP( ABS( ztamr ) * MIN ( zmt1, zmt2 ) / ( ztatm - 35.86 + MAX( 0.e0, zmt3 ) ) )
- zev = sf(jp_humi)%fnow(ji,jj,1) * zes ! vapour pressure
- zevsqr = SQRT( zev * 0.01 ) ! square-root of vapour pressure
- zqatm = 0.622 * zev / ( zpatm - 0.378 * zev ) ! specific humidity
- !--------------------------------------!
- ! long-wave radiation over the ocean ! ( Berliand 1952 ; all latitudes )
- !--------------------------------------!
- ztatm3 = ztatm * ztatm * ztatm
- zcldeff = 1.0 - sbudyko(ji,jj) * sf(jp_ccov)%fnow(ji,jj,1) * sf(jp_ccov)%fnow(ji,jj,1)
- ztaevbk = ztatm * ztatm3 * zcldeff * ( 0.39 - 0.05 * zevsqr )
- !
- zqlw(ji,jj) = - emic * stefan * ( ztaevbk + 4. * ztatm3 * ( zsst - ztatm ) )
- !--------------------------------------------------
- ! Latent and sensible heat fluxes over the ocean
- !--------------------------------------------------
- ! ! vapour pressure at saturation of ocean
- zeso = 611.0 * EXP ( 17.2693884 * ( zsst - rtt ) * tmask(ji,jj,1) / ( zsst - 35.86 ) )
- zqsato = ( 0.622 * zeso ) / ( zpatm - 0.378 * zeso ) ! humidity close to the ocean surface (at saturation)
- ! Drag coefficients from Large and Pond (1981,1982)
- ! ! Stability parameters
- zdteta = zsst - ztatm
- zdeltaq = zqatm - zqsato
- ztvmoy = ztatm * ( 1. + 2.2e-3 * ztatm * zqatm )
- zdenum = MAX( sf(jp_wndm)%fnow(ji,jj,1) * sf(jp_wndm)%fnow(ji,jj,1) * ztvmoy, eps20 )
- zdtetar = zdteta / zdenum
- ztvmoyr = ztvmoy * ztvmoy * zdeltaq / zdenum
- ! ! case of stable atmospheric conditions
- zobouks = -70.0 * 10. * ( zdtetar + 3.2e-3 * ztvmoyr )
- zobouks = MAX( 0.e0, zobouks )
- zpsims = -7.0 * zobouks
- zpsihs = zpsims
- zpsils = zpsims
- ! ! case of unstable atmospheric conditions
- zobouku = MIN( 0.e0, -100.0 * 10.0 * ( zdtetar + 2.2e-3 * ztvmoyr ) )
- zxins = ( 1. - 16. * zobouku )**0.25
- zlxins = LOG( ( 1. + zxins * zxins ) / 2. )
- zpsimu = 2. * LOG( ( 1 + zxins ) * 0.5 ) + zlxins - 2. * ATAN( zxins ) + rpi * 0.5
- zpsihu = 2. * zlxins
- zpsilu = zpsihu
- ! ! intermediate values
- zstab = MAX( 0.e0, SIGN( 1.e0, zdteta ) )
- zpsim = zstab * zpsimu + ( 1.0 - zstab ) * zpsims
- zpsih = zstab * zpsihu + ( 1.0 - zstab ) * zpsihs
- zpsil = zpsih
-
- zvatmg = MAX( 0.032 * 1.5e-3 * sf(jp_wndm)%fnow(ji,jj,1) * sf(jp_wndm)%fnow(ji,jj,1) / grav, eps20 )
- zcmn = vkarmn / LOG ( 10. / zvatmg )
- zchn = 0.0327 * zcmn
- zcln = 0.0346 * zcmn
- zcmcmn = 1. / ( 1. - zcmn * zpsim / vkarmn )
- ! sometimes the ratio zchn * zpsih / ( vkarmn * zcmn ) is too close to 1 and zchcm becomes very very big
- zcmax = 0.1 ! choice for maximum value of the heat transfer coefficient, guided by my intuition
- zrmax = 1 - 3.e-4 / zcmax ! maximum value of the ratio
- zchcm = zcmcmn / ( 1. - MIN ( zchn * zpsih / ( vkarmn * zcmn ) , zrmax ) )
- zclcm = zchcm
- ! ! transfert coef. (Large and Pond 1981,1982)
- zcsho = zchn * zchcm
- zcleo = zcln * zclcm
- zrhova = zrhoa * sf(jp_wndm)%fnow(ji,jj,1)
- ! sensible heat flux
- zqsb(ji,jj) = zrhova * zcsho * 1004.0 * ( zsst - ztatm )
-
- ! latent heat flux (bounded by zero)
- zqla(ji,jj) = MAX( 0.e0, zrhova * zcleo * 2.5e+06 * ( zqsato - zqatm ) )
- !
- END DO
- END DO
-
- ! ----------------------------------------------------------------------------- !
- ! III Total FLUXES !
- ! ----------------------------------------------------------------------------- !
- zcevap = rcp / cevap ! convert zqla ==> evap (Kg/m2/s) ==> m/s ==> W/m2
- zcprec = rcp / rday ! convert prec ( mm/day ==> m/s) ==> W/m2
- !CDIR COLLAPSE
- emp(:,:) = zqla(:,:) / cevap & ! freshwater flux
- & - sf(jp_prec)%fnow(:,:,1) / rday * tmask(:,:,1)
- !
- !CDIR COLLAPSE
- qns(:,:) = zqlw(:,:) - zqsb(:,:) - zqla(:,:) & ! Downward Non Solar flux
- & - zqla(:,:) * pst(:,:) * zcevap & ! remove evap. heat content at SST in Celcius
- & + sf(jp_prec)%fnow(:,:,1) * sf(jp_tair)%fnow(:,:,1) * zcprec ! add precip. heat content at Tair in Celcius
- qns(:,:) = qns(:,:) * tmask(:,:,1)
- #if defined key_lim3
- qns_oce(:,:) = zqlw(:,:) - zqsb(:,:) - zqla(:,:)
- qsr_oce(:,:) = qsr(:,:)
- #endif
- ! NB: if sea-ice model, the snow precip are computed and the associated heat is added to qns (see blk_ice_clio)
- IF ( nn_ice == 0 ) THEN
- CALL iom_put( "qlw_oce" , zqlw ) ! output downward longwave heat over the ocean
- CALL iom_put( "qsb_oce" , - zqsb ) ! output downward sensible heat over the ocean
- CALL iom_put( "qla_oce" , - zqla ) ! output downward latent heat over the ocean
- CALL iom_put( "qemp_oce", qns-zqlw+zqsb+zqla ) ! output downward heat content of E-P over the ocean
- CALL iom_put( "qns_oce" , qns ) ! output downward non solar heat over the ocean
- CALL iom_put( "qsr_oce" , qsr ) ! output downward solar heat over the ocean
- CALL iom_put( "qt_oce" , qns+qsr ) ! output total downward heat over the ocean
- ENDIF
- IF(ln_ctl) THEN
- CALL prt_ctl(tab2d_1=zqsb , clinfo1=' blk_oce_clio: zqsb : ', tab2d_2=zqlw , clinfo2=' zqlw : ')
- CALL prt_ctl(tab2d_1=zqla , clinfo1=' blk_oce_clio: zqla : ', tab2d_2=qsr , clinfo2=' qsr : ')
- CALL prt_ctl(tab2d_1=pst , clinfo1=' blk_oce_clio: pst : ', tab2d_2=emp , clinfo2=' emp : ')
- CALL prt_ctl(tab2d_1=utau , clinfo1=' blk_oce_clio: utau : ', mask1=umask, &
- & tab2d_2=vtau , clinfo2=' vtau : ', mask2=vmask )
- ENDIF
- CALL wrk_dealloc( jpi,jpj, zqlw, zqla, zqsb )
- !
- IF( nn_timing == 1 ) CALL timing_stop('blk_oce_clio')
- !
- END SUBROUTINE blk_oce_clio
- # if defined key_lim2 || defined key_lim3
- SUBROUTINE blk_ice_clio_tau
- !!---------------------------------------------------------------------------
- !! *** ROUTINE blk_ice_clio_tau ***
- !!
- !! ** Purpose : Computation momentum flux at the ice-atm interface
- !!
- !! ** Method : Read utau from a forcing file. Rearrange if C-grid
- !!
- !!----------------------------------------------------------------------
- REAL(wp) :: zcoef
- INTEGER :: ji, jj ! dummy loop indices
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('blk_ice_clio_tau')
- SELECT CASE( cp_ice_msh )
- CASE( 'C' ) ! C-grid ice dynamics
- zcoef = cai / cao ! Change from air-sea stress to air-ice stress
- utau_ice(:,:) = zcoef * utau(:,:)
- vtau_ice(:,:) = zcoef * vtau(:,:)
- CASE( 'I' ) ! I-grid ice dynamics: I-point (i.e. F-point lower-left corner)
- zcoef = 0.5_wp * cai / cao ! Change from air-sea stress to air-ice stress
- DO jj = 2, jpj ! stress from ocean U- and V-points to ice U,V point
- DO ji = 2, jpi ! I-grid : no vector opt.
- utau_ice(ji,jj) = zcoef * ( utau(ji-1,jj ) + utau(ji-1,jj-1) )
- vtau_ice(ji,jj) = zcoef * ( vtau(ji ,jj-1) + vtau(ji-1,jj-1) )
- END DO
- END DO
- CALL lbc_lnk( utau_ice(:,:), 'I', -1. ) ; CALL lbc_lnk( vtau_ice(:,:), 'I', -1. ) ! I-point
- END SELECT
- IF(ln_ctl) THEN
- CALL prt_ctl(tab2d_1=utau_ice , clinfo1=' blk_ice_clio: utau_ice : ', tab2d_2=vtau_ice , clinfo2=' vtau_ice : ')
- ENDIF
- IF( nn_timing == 1 ) CALL timing_stop('blk_ice_clio_tau')
- END SUBROUTINE blk_ice_clio_tau
- #endif
- # if defined key_lim2 || defined key_lim3
- SUBROUTINE blk_ice_clio_flx( ptsu , palb_cs, palb_os, palb )
- !!---------------------------------------------------------------------------
- !! *** ROUTINE blk_ice_clio_flx ***
- !!
- !! ** Purpose : Computation of the heat fluxes at ocean and snow/ice
- !! surface the solar heat at ocean and snow/ice surfaces and the
- !! sensitivity of total heat fluxes to the SST variations
- !!
- !! ** Method : The flux of heat at the ice and ocean surfaces are derived
- !! from semi-empirical ( or bulk ) formulae which relate the flux to
- !! the properties of the surface and of the lower atmosphere. Here, we
- !! follow the work of Oberhuber, 1988
- !!
- !! ** Action : call albedo_oce/albedo_ice to compute ocean/ice albedo
- !! - snow precipitation
- !! - solar flux at the ocean and ice surfaces
- !! - the long-wave radiation for the ocean and sea/ice
- !! - turbulent heat fluxes over water and ice
- !! - evaporation over water
- !! - total heat fluxes sensitivity over ice (dQ/dT)
- !! - latent heat flux sensitivity over ice (dQla/dT)
- !! - qns : modified the non solar heat flux over the ocean
- !! to take into account solid precip latent heat flux
- !!----------------------------------------------------------------------
- REAL(wp), INTENT(in ), DIMENSION(:,:,:) :: ptsu ! ice surface temperature [Kelvin]
- REAL(wp), INTENT(in ), DIMENSION(:,:,:) :: palb_cs ! ice albedo (clear sky) (alb_ice_cs) [-]
- REAL(wp), INTENT(in ), DIMENSION(:,:,:) :: palb_os ! ice albedo (overcast sky) (alb_ice_os) [-]
- REAL(wp), INTENT( out), DIMENSION(:,:,:) :: palb ! ice albedo (actual value) [-]
- !!
- INTEGER :: ji, jj, jl ! dummy loop indices
- !!
- REAL(wp) :: zmt1, zmt2, zmt3, ztatm3 ! temporary scalars
- REAL(wp) :: ztaevbk, zind1, zind2, zind3, ztamr ! - -
- REAL(wp) :: zesi, zqsati, zdesidt ! - -
- REAL(wp) :: zdqla, zcldeff, zev, zes, zpatm, zrhova ! - -
- REAL(wp) :: zcshi, zclei, zrhovaclei, zrhovacshi ! - -
- REAL(wp) :: ztice3, zticemb, zticemb2, zdqlw, zdqsb ! - -
- REAL(wp) :: z1_lsub ! - -
- !!
- REAL(wp), DIMENSION(:,:) , POINTER :: ztatm ! Tair in Kelvin
- REAL(wp), DIMENSION(:,:) , POINTER :: zqatm ! specific humidity
- REAL(wp), DIMENSION(:,:) , POINTER :: zevsqr ! vapour pressure square-root
- REAL(wp), DIMENSION(:,:) , POINTER :: zrhoa ! air density
- REAL(wp), DIMENSION(:,:,:), POINTER :: z_qlw, z_qsb
- REAL(wp), DIMENSION(:,:) , POINTER :: zevap, zsnw
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('blk_ice_clio_flx')
- !
- CALL wrk_alloc( jpi,jpj, ztatm, zqatm, zevsqr, zrhoa )
- CALL wrk_alloc( jpi,jpj, jpl, z_qlw, z_qsb )
- zpatm = 101000. ! atmospheric pressure (assumed constant here)
- !--------------------------------------------------------------------------------
- ! Determine cloud optical depths as a function of latitude (Chou et al., 1981).
- ! and the correction factor for taking into account the effect of clouds
- !--------------------------------------------------------------------------------
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- ztatm (ji,jj) = sf(jp_tair)%fnow(ji,jj,1) ! air temperature in Kelvins
-
- zrhoa(ji,jj) = zpatm / ( 287.04 * ztatm(ji,jj) ) ! air density (equation of state for dry air)
-
- ztamr = ztatm(ji,jj) - rtt ! Saturation water vapour
- zmt1 = SIGN( 17.269, ztamr )
- zmt2 = SIGN( 21.875, ztamr )
- zmt3 = SIGN( 28.200, -ztamr )
- zes = 611.0 * EXP( ABS( ztamr ) * MIN ( zmt1, zmt2 ) &
- & / ( ztatm(ji,jj) - 35.86 + MAX( 0.e0, zmt3 ) ) )
- zev = sf(jp_humi)%fnow(ji,jj,1) * zes ! vapour pressure
- zevsqr(ji,jj) = SQRT( zev * 0.01 ) ! square-root of vapour pressure
- zqatm(ji,jj) = 0.622 * zev / ( zpatm - 0.378 * zev ) ! specific humidity
- !----------------------------------------------------
- ! Computation of snow precipitation (Ledley, 1985) |
- !----------------------------------------------------
- zmt1 = 253.0 - ztatm(ji,jj) ; zind1 = MAX( 0.e0, SIGN( 1.e0, zmt1 ) )
- zmt2 = ( 272.0 - ztatm(ji,jj) ) / 38.0 ; zind2 = MAX( 0.e0, SIGN( 1.e0, zmt2 ) )
- zmt3 = ( 281.0 - ztatm(ji,jj) ) / 18.0 ; zind3 = MAX( 0.e0, SIGN( 1.e0, zmt3 ) )
- sprecip(ji,jj) = sf(jp_prec)%fnow(ji,jj,1) / rday & ! rday = converte mm/day to kg/m2/s
- & * ( zind1 & ! solid (snow) precipitation [kg/m2/s]
- & + ( 1.0 - zind1 ) * ( zind2 * ( 0.5 + zmt2 ) &
- & + ( 1.0 - zind2 ) * zind3 * zmt3 ) )
- !----------------------------------------------------!
- ! fraction of net penetrative shortwave radiation !
- !----------------------------------------------------!
- ! fraction of qsr_ice which is NOT absorbed in the thin surface layer
- ! and thus which penetrates inside the ice cover ( Maykut and Untersteiner, 1971 ; Elbert anbd Curry, 1993 )
- fr1_i0(ji,jj) = 0.18 * ( 1.e0 - sf(jp_ccov)%fnow(ji,jj,1) ) + 0.35 * sf(jp_ccov)%fnow(ji,jj,1)
- fr2_i0(ji,jj) = 0.82 * ( 1.e0 - sf(jp_ccov)%fnow(ji,jj,1) ) + 0.65 * sf(jp_ccov)%fnow(ji,jj,1)
- END DO
- END DO
- CALL iom_put( 'snowpre', sprecip ) ! Snow precipitation
-
- !-----------------------------------------------------------!
- ! snow/ice Shortwave radiation (abedo already computed) !
- !-----------------------------------------------------------!
- CALL blk_clio_qsr_ice( palb_cs, palb_os, qsr_ice )
-
- DO jl = 1, jpl
- palb(:,:,jl) = ( palb_cs(:,:,jl) * ( 1.e0 - sf(jp_ccov)%fnow(:,:,1) ) &
- & + palb_os(:,:,jl) * sf(jp_ccov)%fnow(:,:,1) )
- END DO
- ! ! ========================== !
- DO jl = 1, jpl ! Loop over ice categories !
- ! ! ========================== !
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1 , jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- !-------------------------------------------!
- ! long-wave radiation over ice categories ! ( Berliand 1952 ; all latitudes )
- !-------------------------------------------!
- ztatm3 = ztatm(ji,jj) * ztatm(ji,jj) * ztatm(ji,jj)
- zcldeff = 1.0 - sbudyko(ji,jj) * sf(jp_ccov)%fnow(ji,jj,1) * sf(jp_ccov)%fnow(ji,jj,1)
- ztaevbk = ztatm3 * ztatm(ji,jj) * zcldeff * ( 0.39 - 0.05 * zevsqr(ji,jj) )
- !
- z_qlw(ji,jj,jl) = - emic * stefan * ( ztaevbk + 4. * ztatm3 * ( ptsu(ji,jj,jl) - ztatm(ji,jj) ) )
- !----------------------------------------
- ! Turbulent heat fluxes over snow/ice ( Latent and sensible )
- !----------------------------------------
- ! vapour pressure at saturation of ice (tmask to avoid overflow in the exponential)
- zesi = 611.0 * EXP( 21.8745587 * tmask(ji,jj,1) * ( ptsu(ji,jj,jl) - rtt )/ ( ptsu(ji,jj,jl) - 7.66 ) )
- ! humidity close to the ice surface (at saturation)
- zqsati = ( 0.622 * zesi ) / ( zpatm - 0.378 * zesi )
-
- ! computation of intermediate values
- zticemb = ptsu(ji,jj,jl) - 7.66
- zticemb2 = zticemb * zticemb
- ztice3 = ptsu(ji,jj,jl) * ptsu(ji,jj,jl) * ptsu(ji,jj,jl)
- zdesidt = zesi * ( 9.5 * LOG( 10.0 ) * ( rtt - 7.66 ) / zticemb2 )
-
- ! Transfer cofficients assumed to be constant (Parkinson 1979 ; Maykut 1982)
- zcshi = 1.75e-03
- zclei = zcshi
-
- ! sensible and latent fluxes over ice
- zrhova = zrhoa(ji,jj) * sf(jp_wndm)%fnow(ji,jj,1) ! computation of intermediate values
- zrhovaclei = zrhova * zcshi * 2.834e+06
- zrhovacshi = zrhova * zclei * 1004.0
-
- ! sensible heat flux
- z_qsb(ji,jj,jl) = zrhovacshi * ( ptsu(ji,jj,jl) - ztatm(ji,jj) )
-
- ! latent heat flux
- qla_ice(ji,jj,jl) = MAX( 0.e0, zrhovaclei * ( zqsati - zqatm(ji,jj) ) )
-
- ! sensitivity of non solar fluxes (dQ/dT) (long-wave, sensible and latent fluxes)
- zdqlw = 4.0 * emic * stefan * ztice3
- zdqsb = zrhovacshi
- zdqla = zrhovaclei * ( zdesidt * ( zqsati * zqsati / ( zesi * zesi ) ) * ( zpatm / 0.622 ) )
- !
- dqla_ice(ji,jj,jl) = zdqla ! latent flux sensitivity
- dqns_ice(ji,jj,jl) = -( zdqlw + zdqsb + zdqla ) ! total non solar sensitivity
- END DO
- !
- END DO
- !
- END DO
- !
- ! ----------------------------------------------------------------------------- !
- ! Total FLUXES !
- ! ----------------------------------------------------------------------------- !
- !
- !CDIR COLLAPSE
- qns_ice(:,:,:) = z_qlw (:,:,:) - z_qsb (:,:,:) - qla_ice (:,:,:) ! Downward Non Solar flux
- !CDIR COLLAPSE
- tprecip(:,:) = sf(jp_prec)%fnow(:,:,1) / rday ! total precipitation [kg/m2/s]
- !
- ! ----------------------------------------------------------------------------- !
- ! Correct the OCEAN non solar flux with the existence of solid precipitation !
- ! ---------------=====--------------------------------------------------------- !
- !CDIR COLLAPSE
- qns(:,:) = qns(:,:) & ! update the non-solar heat flux with:
- & - sprecip(:,:) * lfus & ! remove melting solid precip
- & + sprecip(:,:) * MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow - rt0 ) * cpic & ! add solid P at least below melting
- & - sprecip(:,:) * sf(jp_tair)%fnow(:,:,1) * rcp ! remove solid precip. at Tair
- #if defined key_lim3
- ! ----------------------------------------------------------------------------- !
- ! Distribute evapo, precip & associated heat over ice and ocean
- ! ---------------=====--------------------------------------------------------- !
- CALL wrk_alloc( jpi,jpj, zevap, zsnw )
- ! --- evaporation --- !
- z1_lsub = 1._wp / Lsub
- evap_ice (:,:,:) = qla_ice (:,:,:) * z1_lsub ! sublimation
- devap_ice(:,:,:) = dqla_ice(:,:,:) * z1_lsub
- zevap (:,:) = emp(:,:) + tprecip(:,:) ! evaporation over ocean
- ! --- evaporation minus precipitation --- !
- zsnw(:,:) = 0._wp
- CALL lim_thd_snwblow( pfrld, zsnw ) ! snow redistribution by wind
- emp_oce(:,:) = pfrld(:,:) * zevap(:,:) - ( tprecip(:,:) - sprecip(:,:) ) - sprecip(:,:) * ( 1._wp - zsnw )
- emp_ice(:,:) = SUM( a_i_b(:,:,:) * evap_ice(:,:,:), dim=3 ) - sprecip(:,:) * zsnw
- emp_tot(:,:) = emp_oce(:,:) + emp_ice(:,:)
- ! --- heat flux associated with emp --- !
- qemp_oce(:,:) = - pfrld(:,:) * zevap(:,:) * sst_m(:,:) * rcp & ! evap
- & + ( tprecip(:,:) - sprecip(:,:) ) * ( sf(jp_tair)%fnow(:,:,1) - rt0 ) * rcp & ! liquid precip
- & + sprecip(:,:) * ( 1._wp - zsnw ) * & ! solid precip
- & ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus )
- qemp_ice(:,:) = sprecip(:,:) * zsnw * & ! solid precip (only)
- & ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus )
- ! --- total solar and non solar fluxes --- !
- qns_tot(:,:) = pfrld(:,:) * qns_oce(:,:) + SUM( a_i_b(:,:,:) * qns_ice(:,:,:), dim=3 ) + qemp_ice(:,:) + qemp_oce(:,:)
- qsr_tot(:,:) = pfrld(:,:) * qsr_oce(:,:) + SUM( a_i_b(:,:,:) * qsr_ice(:,:,:), dim=3 )
- ! --- heat content of precip over ice in J/m3 (to be used in 1D-thermo) --- !
- qprec_ice(:,:) = rhosn * ( ( MIN( sf(jp_tair)%fnow(:,:,1), rt0_snow ) - rt0 ) * cpic * tmask(:,:,1) - lfus )
- ! --- heat content of evap over ice in W/m2 (to be used in 1D-thermo) --- !
- DO jl = 1, jpl
- qevap_ice(:,:,jl) = 0._wp ! should be -evap_ice(:,:,jl)*( ( Tice - rt0 ) * cpic * tmask(:,:,1) - lfus )
- ! but then qemp_ice should also include sublimation
- END DO
- CALL wrk_dealloc( jpi,jpj, zevap, zsnw )
- #endif
- !!gm : not necessary as all input data are lbc_lnk...
- CALL lbc_lnk( fr1_i0 (:,:) , 'T', 1. )
- CALL lbc_lnk( fr2_i0 (:,:) , 'T', 1. )
- DO jl = 1, jpl
- CALL lbc_lnk( qns_ice (:,:,jl) , 'T', 1. )
- CALL lbc_lnk( dqns_ice(:,:,jl) , 'T', 1. )
- CALL lbc_lnk( qla_ice (:,:,jl) , 'T', 1. )
- CALL lbc_lnk( dqla_ice(:,:,jl) , 'T', 1. )
- END DO
- !!gm : mask is not required on forcing
- DO jl = 1, jpl
- qns_ice (:,:,jl) = qns_ice (:,:,jl) * tmask(:,:,1)
- qla_ice (:,:,jl) = qla_ice (:,:,jl) * tmask(:,:,1)
- dqns_ice(:,:,jl) = dqns_ice(:,:,jl) * tmask(:,:,1)
- dqla_ice(:,:,jl) = dqla_ice(:,:,jl) * tmask(:,:,1)
- END DO
- CALL wrk_dealloc( jpi,jpj, ztatm, zqatm, zevsqr, zrhoa )
- CALL wrk_dealloc( jpi,jpj, jpl , z_qlw, z_qsb )
- IF(ln_ctl) THEN
- CALL prt_ctl(tab3d_1=z_qsb , clinfo1=' blk_ice_clio: z_qsb : ', tab3d_2=z_qlw , clinfo2=' z_qlw : ', kdim=jpl)
- CALL prt_ctl(tab3d_1=qla_ice , clinfo1=' blk_ice_clio: z_qla : ', tab3d_2=qsr_ice , clinfo2=' qsr_ice : ', kdim=jpl)
- CALL prt_ctl(tab3d_1=dqns_ice , clinfo1=' blk_ice_clio: dqns_ice : ', tab3d_2=qns_ice , clinfo2=' qns_ice : ', kdim=jpl)
- CALL prt_ctl(tab3d_1=dqla_ice , clinfo1=' blk_ice_clio: dqla_ice : ', tab3d_2=ptsu , clinfo2=' ptsu : ', kdim=jpl)
- CALL prt_ctl(tab2d_1=tprecip , clinfo1=' blk_ice_clio: tprecip : ', tab2d_2=sprecip , clinfo2=' sprecip : ')
- ENDIF
- IF( nn_timing == 1 ) CALL timing_stop('blk_ice_clio_flx')
- !
- END SUBROUTINE blk_ice_clio_flx
- #endif
- SUBROUTINE blk_clio_qsr_oce( pqsr_oce )
- !!---------------------------------------------------------------------------
- !! *** ROUTINE blk_clio_qsr_oce ***
- !!
- !! ** Purpose : Computation of the shortwave radiation at the ocean and the
- !! snow/ice surfaces.
- !!
- !! ** Method : - computed qsr from the cloud cover for both ice and ocean
- !! - also initialise sbudyko and stauc once for all
- !!----------------------------------------------------------------------
- REAL(wp), INTENT( out), DIMENSION(jpi,jpj) :: pqsr_oce ! shortwave radiation over the ocean
- !!
- INTEGER, PARAMETER :: jp24 = 24 ! sampling of the daylight period (sunrise to sunset) into 24 equal parts
- !!
- INTEGER :: ji, jj, jt ! dummy loop indices
- INTEGER :: indaet ! = -1, 0, 1 for odd, normal and leap years resp.
- INTEGER :: iday ! integer part of day
- INTEGER :: indxb, indxc ! index for cloud depth coefficient
- REAL(wp) :: zalat , zclat, zcmue, zcmue2 ! local scalars
- REAL(wp) :: zmt1, zmt2, zmt3 !
- REAL(wp) :: zdecl, zsdecl , zcdecl !
- REAL(wp) :: za_oce, ztamr !
- REAL(wp) :: zdl, zlha ! local scalars
- REAL(wp) :: zlmunoon, zcldcor, zdaycor !
- REAL(wp) :: zxday, zdist, zcoef, zcoef1 !
- REAL(wp) :: zes
-
- REAL(wp), DIMENSION(:,:), POINTER :: zev ! vapour pressure
- REAL(wp), DIMENSION(:,:), POINTER :: zdlha, zlsrise, zlsset ! 2D workspace
- REAL(wp), DIMENSION(:,:), POINTER :: zps, zpc ! sine (cosine) of latitude per sine (cosine) of solar declination
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('blk_clio_qsr_oce')
- !
- CALL wrk_alloc( jpi,jpj, zev, zdlha, zlsrise, zlsset, zps, zpc )
- IF( lbulk_init ) THEN ! Initilization at first time step only
- rdtbs2 = nn_fsbc * rdt * 0.5
- ! cloud optical depths as a function of latitude (Chou et al., 1981).
- ! and the correction factor for taking into account the effect of clouds
- DO jj = 1, jpj
- DO ji = 1 , jpi
- zalat = ( 90.e0 - ABS( gphit(ji,jj) ) ) / 5.e0
- zclat = ( 95.e0 - gphit(ji,jj) ) / 10.e0
- indxb = 1 + INT( zalat )
- indxc = 1 + INT( zclat )
- zdl = zclat - INT( zclat )
- ! correction factor to account for the effect of clouds
- sbudyko(ji,jj) = budyko(indxb)
- stauc (ji,jj) = ( 1.e0 - zdl ) * tauco( indxc ) + zdl * tauco( indxc + 1 )
- END DO
- END DO
- lbulk_init = .FALSE.
- ENDIF
- ! Saturated water vapour and vapour pressure
- ! ------------------------------------------
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- ztamr = sf(jp_tair)%fnow(ji,jj,1) - rtt
- zmt1 = SIGN( 17.269, ztamr )
- zmt2 = SIGN( 21.875, ztamr )
- zmt3 = SIGN( 28.200, -ztamr )
- zes = 611.0 * EXP( ABS( ztamr ) * MIN ( zmt1, zmt2 ) & ! Saturation water vapour
- & / ( sf(jp_tair)%fnow(ji,jj,1) - 35.86 + MAX( 0.e0, zmt3 ) ) )
- zev(ji,jj) = sf(jp_humi)%fnow(ji,jj,1) * zes * 1.0e-05 ! vapour pressure
- END DO
- END DO
- !-----------------------------------!
- ! Computation of solar irradiance !
- !-----------------------------------!
- !!gm : hard coded leap year ???
- indaet = 1 ! = -1, 0, 1 for odd, normal and leap years resp.
- zxday = nday_year + rdtbs2 / rday ! day of the year at which the fluxes are calculated
- iday = INT( zxday ) ! (centred at the middle of the ice time step)
- CALL flx_blk_declin( indaet, iday, zdecl ) ! solar declination of the current day
- zsdecl = SIN( zdecl * rad ) ! its sine
- zcdecl = COS( zdecl * rad ) ! its cosine
- ! correction factor added for computation of shortwave flux to take into account the variation of
- ! the distance between the sun and the earth during the year (Oberhuber 1988)
- zdist = zxday * 2. * rpi / REAL(nyear_len(1), wp)
- zdaycor = 1.0 + 0.0013 * SIN( zdist ) + 0.0342 * COS( zdist )
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- ! product of sine (cosine) of latitude and sine (cosine) of solar declination
- zps(ji,jj) = SIN( gphit(ji,jj) * rad ) * zsdecl
- zpc(ji,jj) = COS( gphit(ji,jj) * rad ) * zcdecl
- ! computation of the both local time of sunrise and sunset
- zlsrise(ji,jj) = ACOS( - SIGN( 1.e0, zps(ji,jj) ) &
- & * MIN( 1.e0, SIGN( 1.e0, zps(ji,jj) ) * ( zps(ji,jj) / zpc(ji,jj) ) ) )
- zlsset (ji,jj) = - zlsrise(ji,jj)
- ! dividing the solar day into jp24 segments of length zdlha
- zdlha (ji,jj) = ( zlsrise(ji,jj) - zlsset(ji,jj) ) / REAL( jp24, wp )
- END DO
- END DO
- !---------------------------------------------!
- ! shortwave radiation absorbed by the ocean !
- !---------------------------------------------!
- pqsr_oce(:,:) = 0.e0 ! set ocean qsr to zero
- ! compute and sum ocean qsr over the daylight (i.e. between sunrise and sunset)
- !CDIR NOVERRCHK
- DO jt = 1, jp24
- zcoef = FLOAT( jt ) - 0.5
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zlha = COS( zlsrise(ji,jj) - zcoef * zdlha(ji,jj) ) ! local hour angle
- zcmue = MAX( 0.e0 , zps(ji,jj) + zpc(ji,jj) * zlha ) ! cos of local solar altitude
- zcmue2 = 1368.0 * zcmue * zcmue
- ! ocean albedo depending on the cloud cover (Payne, 1972)
- za_oce = ( 1.0 - sf(jp_ccov)%fnow(ji,jj,1) ) * 0.05 / ( 1.1 * zcmue**1.4 + 0.15 ) & ! clear sky
- & + sf(jp_ccov)%fnow(ji,jj,1) * 0.06 ! overcast
- ! solar heat flux absorbed by the ocean (Zillman, 1972)
- pqsr_oce(ji,jj) = pqsr_oce(ji,jj) &
- & + ( 1.0 - za_oce ) * zdlha(ji,jj) * zcmue2 &
- & / ( ( zcmue + 2.7 ) * zev(ji,jj) + 1.085 * zcmue + 0.10 )
- END DO
- END DO
- END DO
- ! Taking into account the ellipsity of the earth orbit, the clouds AND masked if sea-ice cover > 0%
- zcoef1 = srgamma * zdaycor / ( 2. * rpi )
- !CDIR COLLAPSE
- DO jj = 1, jpj
- DO ji = 1, jpi
- zlmunoon = ASIN( zps(ji,jj) + zpc(ji,jj) ) / rad ! local noon solar altitude
- zcldcor = MIN( 1.e0, ( 1.e0 - 0.62 * sf(jp_ccov)%fnow(ji,jj,1) & ! cloud correction (Reed 1977)
- & + 0.0019 * zlmunoon ) )
- pqsr_oce(ji,jj) = zcoef1 * zcldcor * pqsr_oce(ji,jj) * tmask(ji,jj,1) ! and zcoef1: ellipsity
- END DO
- END DO
- CALL wrk_dealloc( jpi,jpj, zev, zdlha, zlsrise, zlsset, zps, zpc )
- !
- IF( nn_timing == 1 ) CALL timing_stop('blk_clio_qsr_oce')
- !
- END SUBROUTINE blk_clio_qsr_oce
- SUBROUTINE blk_clio_qsr_ice( pa_ice_cs, pa_ice_os, pqsr_ice )
- !!---------------------------------------------------------------------------
- !! *** ROUTINE blk_clio_qsr_ice ***
- !!
- !! ** Purpose : Computation of the shortwave radiation at the ocean and the
- !! snow/ice surfaces.
- !!
- !! ** Method : - computed qsr from the cloud cover for both ice and ocean
- !! - also initialise sbudyko and stauc once for all
- !!----------------------------------------------------------------------
- REAL(wp), INTENT(in ), DIMENSION(:,:,:) :: pa_ice_cs ! albedo of ice under clear sky
- REAL(wp), INTENT(in ), DIMENSION(:,:,:) :: pa_ice_os ! albedo of ice under overcast sky
- REAL(wp), INTENT( out), DIMENSION(:,:,:) :: pqsr_ice ! shortwave radiation over the ice/snow
- !!
- INTEGER, PARAMETER :: jp24 = 24 ! sampling of the daylight period (sunrise to sunset) into 24 equal parts
- !!
- INTEGER :: ji, jj, jl, jt ! dummy loop indices
- INTEGER :: ijpl ! number of ice categories (3rd dim of pqsr_ice)
- INTEGER :: indaet ! = -1, 0, 1 for odd, normal and leap years resp.
- INTEGER :: iday ! integer part of day
- !!
- REAL(wp) :: zcmue, zcmue2, ztamr ! temporary scalars
- REAL(wp) :: zmt1, zmt2, zmt3 ! - -
- REAL(wp) :: zdecl, zsdecl, zcdecl ! - -
- REAL(wp) :: zlha, zdaycor, zes ! - -
- REAL(wp) :: zxday, zdist, zcoef, zcoef1 ! - -
- REAL(wp) :: zqsr_ice_cs, zqsr_ice_os ! - -
- REAL(wp), DIMENSION(:,:), POINTER :: zev ! vapour pressure
- REAL(wp), DIMENSION(:,:), POINTER :: zdlha, zlsrise, zlsset ! 2D workspace
- REAL(wp), DIMENSION(:,:), POINTER :: zps, zpc ! sine (cosine) of latitude per sine (cosine) of solar declination
- !!---------------------------------------------------------------------
- !
- IF( nn_timing == 1 ) CALL timing_start('blk_clio_qsr_ice')
- !
- CALL wrk_alloc( jpi,jpj, zev, zdlha, zlsrise, zlsset, zps, zpc )
- ijpl = SIZE(pqsr_ice, 3 ) ! number of ice categories
-
- ! Saturated water vapour and vapour pressure
- ! ------------------------------------------
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- ztamr = sf(jp_tair)%fnow(ji,jj,1) - rtt
- zmt1 = SIGN( 17.269, ztamr )
- zmt2 = SIGN( 21.875, ztamr )
- zmt3 = SIGN( 28.200, -ztamr )
- zes = 611.0 * EXP( ABS( ztamr ) * MIN ( zmt1, zmt2 ) & ! Saturation water vapour
- & / ( sf(jp_tair)%fnow(ji,jj,1) - 35.86 + MAX( 0.e0, zmt3 ) ) )
- zev(ji,jj) = sf(jp_humi)%fnow(ji,jj,1) * zes * 1.0e-05 ! vapour pressure
- END DO
- END DO
- !-----------------------------------!
- ! Computation of solar irradiance !
- !-----------------------------------!
- !!gm : hard coded leap year ???
- indaet = 1 ! = -1, 0, 1 for odd, normal and leap years resp.
- zxday = nday_year + rdtbs2 / rday ! day of the year at which the fluxes are calculated
- iday = INT( zxday ) ! (centred at the middle of the ice time step)
- CALL flx_blk_declin( indaet, iday, zdecl ) ! solar declination of the current day
- zsdecl = SIN( zdecl * rad ) ! its sine
- zcdecl = COS( zdecl * rad ) ! its cosine
-
- ! correction factor added for computation of shortwave flux to take into account the variation of
- ! the distance between the sun and the earth during the year (Oberhuber 1988)
- zdist = zxday * 2. * rpi / REAL(nyear_len(1), wp)
- zdaycor = 1.0 + 0.0013 * SIN( zdist ) + 0.0342 * COS( zdist )
- !CDIR NOVERRCHK
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- ! product of sine (cosine) of latitude and sine (cosine) of solar declination
- zps(ji,jj) = SIN( gphit(ji,jj) * rad ) * zsdecl
- zpc(ji,jj) = COS( gphit(ji,jj) * rad ) * zcdecl
- ! computation of the both local time of sunrise and sunset
- zlsrise(ji,jj) = ACOS( - SIGN( 1.e0, zps(ji,jj) ) &
- & * MIN( 1.e0, SIGN( 1.e0, zps(ji,jj) ) * ( zps(ji,jj) / zpc(ji,jj) ) ) )
- zlsset (ji,jj) = - zlsrise(ji,jj)
- ! dividing the solar day into jp24 segments of length zdlha
- zdlha (ji,jj) = ( zlsrise(ji,jj) - zlsset(ji,jj) ) / REAL( jp24, wp )
- END DO
- END DO
- !---------------------------------------------!
- ! shortwave radiation absorbed by the ice !
- !---------------------------------------------!
- ! compute and sum ice qsr over the daylight for each ice categories
- pqsr_ice(:,:,:) = 0.e0
- zcoef1 = zdaycor / ( 2. * rpi ) ! Correction for the ellipsity of the earth orbit
-
- ! !----------------------------!
- DO jl = 1, ijpl ! loop over ice categories !
- ! !----------------------------!
- !CDIR NOVERRCHK
- DO jt = 1, jp24
- zcoef = FLOAT( jt ) - 0.5
- !CDIR NOVERRCHK
- !CDIR COLLAPSE
- DO jj = 1, jpj
- !CDIR NOVERRCHK
- DO ji = 1, jpi
- zlha = COS( zlsrise(ji,jj) - zcoef * zdlha(ji,jj) ) ! local hour angle
- zcmue = MAX( 0.e0 , zps(ji,jj) + zpc(ji,jj) * zlha ) ! cos of local solar altitude
- zcmue2 = 1368.0 * zcmue * zcmue
-
- ! solar heat flux absorbed by the ice/snow system (Shine and Crane 1984 adapted to high albedo)
- zqsr_ice_cs = ( 1.0 - pa_ice_cs(ji,jj,jl) ) * zdlha(ji,jj) * zcmue2 & ! clear sky
- & / ( ( 1.0 + zcmue ) * zev(ji,jj) + 1.2 * zcmue + 0.0455 )
- zqsr_ice_os = zdlha(ji,jj) * SQRT( zcmue ) & ! overcast sky
- & * ( 53.5 + 1274.5 * zcmue ) * ( 1.0 - 0.996 * pa_ice_os(ji,jj,jl) ) &
- & / ( 1.0 + 0.139 * stauc(ji,jj) * ( 1.0 - 0.9435 * pa_ice_os(ji,jj,jl) ) )
-
- pqsr_ice(ji,jj,jl) = pqsr_ice(ji,jj,jl) + ( ( 1.0 - sf(jp_ccov)%fnow(ji,jj,1) ) * zqsr_ice_cs &
- & + sf(jp_ccov)%fnow(ji,jj,1) * zqsr_ice_os )
- END DO
- END DO
- END DO
- !
- ! Correction : Taking into account the ellipsity of the earth orbit
- pqsr_ice(:,:,jl) = pqsr_ice(:,:,jl) * zcoef1 * tmask(:,:,1)
- !
- ! !--------------------------------!
- END DO ! end loop over ice categories !
- ! !--------------------------------!
- !!gm : this should be suppress as input data have been passed through lbc_lnk
- DO jl = 1, ijpl
- CALL lbc_lnk( pqsr_ice(:,:,jl) , 'T', 1. )
- END DO
- !
- CALL wrk_dealloc( jpi,jpj, zev, zdlha, zlsrise, zlsset, zps, zpc )
- !
- IF( nn_timing == 1 ) CALL timing_stop('blk_clio_qsr_ice')
- !
- END SUBROUTINE blk_clio_qsr_ice
- SUBROUTINE flx_blk_declin( ky, kday, pdecl )
- !!---------------------------------------------------------------------------
- !! *** ROUTINE flx_blk_declin ***
- !!
- !! ** Purpose : Computation of the solar declination for the day
- !!
- !! ** Method : ???
- !!---------------------------------------------------------------------
- INTEGER , INTENT(in ) :: ky ! = -1, 0, 1 for odd, normal and leap years resp.
- INTEGER , INTENT(in ) :: kday ! day of the year ( kday = 1 on january 1)
- REAL(wp), INTENT( out) :: pdecl ! solar declination
- !!
- REAL(wp) :: a0 = 0.39507671 ! coefficients for solar declinaison computation
- REAL(wp) :: a1 = 22.85684301 ! " "" "
- REAL(wp) :: a2 = -0.38637317 ! " "" "
- REAL(wp) :: a3 = 0.15096535 ! " "" "
- REAL(wp) :: a4 = -0.00961411 ! " "" "
- REAL(wp) :: b1 = -4.29692073 ! " "" "
- REAL(wp) :: b2 = 0.05702074 ! " "" "
- REAL(wp) :: b3 = -0.09028607 ! " "" "
- REAL(wp) :: b4 = 0.00592797
- !!
- REAL(wp) :: zday ! corresponding day of type year (cf. ky)
- REAL(wp) :: zp ! temporary scalars
- !!---------------------------------------------------------------------
-
- IF ( ky == 1 ) THEN ; zday = REAL( kday, wp ) - 0.5
- ELSEIF( ky == 3 ) THEN ; zday = REAL( kday, wp ) - 1.
- ELSE ; zday = REAL( kday, wp )
- ENDIF
-
- zp = rpi * ( 2.0 * zday - 367.0 ) / REAL(nyear_len(1), wp)
-
- pdecl = a0 &
- & + a1 * COS( zp ) + a2 * COS( 2. * zp ) + a3 * COS( 3. * zp ) + a4 * COS( 4. * zp ) &
- & + b1 * SIN( zp ) + b2 * SIN( 2. * zp ) + b3 * SIN( 3. * zp ) + b4 * SIN( 4. * zp )
- !
- END SUBROUTINE flx_blk_declin
- !!======================================================================
- END MODULE sbcblk_clio
|